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The s-clubs model cohesive social subgroups as vertex subsets that induce subgraphs of diameter at most s. In

defender-attacker settings, for low values of s, they can represent tightly-knit communities whose operation is

undesirable for the defender. For instance, in online social networks, large communities of malicious accounts

can effectively propagate undesirable rumors. In this article we consider a defender that can disrupt vertices

of the adversarial network to minimize its threat, which leads us to consider a maximum s-club interdiction

problem where interdiction is penalized in the objective function. Using a new notion of H-heredity in s-clubs,

we provide a mixed-integer linear programming formulation for this problem that uses far fewer constraints

than the formulation based on standard techniques. We show that the linear programming relaxation of this

formulation has no redundant constraints and identify facets of the convex hull of integral feasible solutions

under special conditions. We further relate H-heredity to latency-s connected dominating sets and design a

decomposition branch-and-cut algorithm for the problem. Our implementation solves benchmark instances

with more than 10,000 vertices in a matter of minutes and is orders of magnitude faster than algorithms

based on the standard formulation.
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1. Motivation

Cohesive subgroups in social networks can represent groups of individuals that share core beliefs,

influence each other, and act together as a unit towards a common goal (Wasserman and Faust

1994). In more general networks, cohesive subgroup models provide formalizations of “tightly-knit

clusters” (Balasundaram et al. 2011) and therefore have been used in applications beyond social

network analysis, for example, to analyze complex biological networks (Pasupuleti 2008, Butenko

and Wilhelm 2006, Balasundaram et al. 2005). The canonical optimization problem of identifying

a particular type of clique relaxation of maximum cardinality (or weight) has received considerable

attention in the literature (Pattillo et al. 2013, Balasundaram and Pajouh 2013) . The focus of this

article is on the interdiction of a clique relaxation that models low-diameter clusters.

As a motivating example, consider the following stylized scenario. Suppose a social media net-

work manager (NM) recognizes that disinformation is being spread with hashtags #badrumor

and #fakenews, and suspects that a coordinated group of adversarial actors whose identities are

unknown may be responsible. Although the NM could ban or deactivate accounts, it would not
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be effective to do so arbitrarily. The NM can consider the following graph model to capture this

situation, let us refer to it as the rumor graph: the vertex set would include all user accounts using

one of the offending hashtags in their posts; the edge set would include an edge {u, v} if account

u liked or reshared a post by account v that included one of the offending hashtags. We use an

undirected edge to indicate that the accounts represented by the end-points are related, and not

necessarily that one is directing the other. Under the assumption that the interaction patterns of

such suspicious accounts in the rumor graph resembles a cohesive social subgroup that is capable

of quick communication, one could arguably phrase the NM’s decision problem as one of optimally

interdicting (by disabling accounts) all large low-diameter cohesive subgroups in the rumor graph.

Although we are describing a stylized version of the decision problem faced by the NM, it can be

a reasonable first step in analyzing such problems to devise effective interdiction policies in practice.

To begin with, we choose to model cohesive subgroups of interest in this rumor network as s-clubs

for low values of parameter s that ensure short pairwise distances inside the cohesive subgroup

between members as a surrogate for quick communication between group members. We are also

assuming that one of the maximum cardinality s-clubs contains the adversarial accounts and that

diminishing its size can impact that group’s ability to spread disinformation. Furthermore, the

other maximum cardinality s-clubs (those not containing the adversarial actors) are unwittingly

helping with the spread of the rumor and arguably also warrant deactivation.

1.1. Background and Notations

Consider an n-vertex graph G = (V,E) with vertex set V := {1, . . . , n} and edge set E ⊆
(
V
2

)
:=

{{u, v} | u, v ∈ V, v 6= u}. We will assume throughout that G is not an empty graph, i.e., E 6= ∅.
Denote by NG(v) := {u ∈ V | {u, v} ∈ E}, the set of neighbors of vertex v and its cardinality by

degG(v). We also use the notation NG[v] := NG(v) ∪ {v} to denote the closed neighborhood of a

vertex v in G. We denote the subgraph induced by a set of vertices S ⊆ V by G[S] :=
(
S,
(
S
2

)
∩E

)
.

For convenience, we denote the deletion of a set of vertices T and incident edges as G\T :=G[V \T ].

We use the following notations to describe concepts related to distances in graphs. Let distG(u, v)

denote the length of the shortest path between a connected pair for vertices u and v in G, where the

length of a path is the number of edges in the path. The diameter of a connected graph is the maxi-

mum distance between a pair of vertices and we denote it by diam(G) := max{distG(u, v) | u, v ∈ V }.
If u and v are in different connected components of G, then the distance between them, and hence

the diameter of that disconnected graph are taken to be infinite. When the graph G under con-

sideration is known without any ambiguity, we drop the subscript G for convenience from all the

notations.

Definition 1 (Mokken (1979); cf. Balasundaram et al. (2005)). Given a graph G =

(V,E) and a positive integer s, we call a subset of vertices S ⊆ V an s-club if diam(G[S])≤ s.
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The largest cardinality of an s-club is called the s-club number of graph G, denoted by ω̄s(G).

Detecting a maximum cardinality s-club, i.e., the maximum s-club problem, is NP-hard in gen-

eral (Bourjolly et al. 2002) and in graphs of diameter s+ 1 (Balasundaram et al. 2005). The model

is one of several types of clique relaxations that have been studied in the literature (Pattillo et al.

2013), as it reduces to a clique when s= 1. With s= 2, we obtain a formalization of the friend-of-a-

friend cluster, as a 2-club S must satisfy at least one of the following conditions for every distinct

pair of vertices u, v ∈ S: either {u, v} ∈E, or NG(u)∩NG(v)∩S 6= ∅. In other words, every pair of

members of a 2-club are either friends or they have a mutual friend in the group. In general, s-clubs

for low values of parameter s∈ {2,3}, can be used to represent clusters where quick communication

between members is possible.

Interdiction by vertex deletion is the focus of this article. Suppose T ⊂ V is the “deletion set.”

A fundamental difference between interdicting cliques in a graph (Furini et al. 2019) versus s-clubs

in a graph is heredity. If K ⊂ V is a clique in G then K \T is a clique in G \T because the clique

property is preserved under vertex deletion. However, the s-club property is not hereditary under

vertex deletion; see Figure 1 (Alba 1973). Consequently, if S is an s-club in G, we cannot claim that

S \T is an s-club in G\T for every T ⊆ S. This fundamental difference drives all of the approaches

taken in this article to model and solve the s-club interdiction problem, and differentiates it from

the techniques recently proposed for interdicting cliques (Furini et al. 2019).

Typically, interdiction comes “at a cost.” If there were no restrictions on T , the entire graph

can be deleted. Shortest path and other network flow interdiction problems are often motivated

by applications that justify using a budget b in a constraint that says the size of T cannot exceed

b (Morton et al. 2007, Pan et al. 2003, Israeli and Wood 2002). The budget in these settings

is derived from physical restrictions such as the number of patrol vehicles available to intercept

smugglers, or the number of sensors that can be deployed in the network for monitoring purposes.

In our setting, we avoid the use of a hard budget constraint as the NM can delete any number of

vertices (e.g., by banning or temporarily disabling user accounts) and may be willing to delete a

large number of accounts to stem the rumor (Spangler 2018). However, if there is no cost incurred

by deleting vertices, we set up a pointless and trivial problem that would suggest deleting V .

Our focus is on identifying and deleting “club-critical vertices” and we assume that we incur an

interdiction penalty in doing so, as opposed to a hard budget constraint.

1.2. Problem Statement

We wish to solve the following optimization problem to find an optimal interdiction policy, that is,

a subset of vertices T ∗ that achieves the following minimum:

min
T⊆V
{ω̄s(G \T ) +α|T |} , (1)
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Figure 1 The set S = {1,2,3,4,5} is a 2-club. After deleting any vertex i∈ S, the set S \{i} will not be a 2-club.

where α> 0 is the unit penalty cost of deleting a vertex. We could interpret this choice of penalty

as follows. As the empty set is a feasible solution to problem (1), we have:

ω̄s(G \T ∗) +α|T ∗| ≤ ω̄s(G)

=⇒ ω̄s(G)− ω̄s(G \T ∗)
|T ∗|

≥ α, assuming T ∗ 6= ∅.

The ratio of the decrease in the s-club number upon interdiction to the size of an optimal deletion

set (when non-empty) is at least α. In our models, we typically choose α ∈
⋃
k∈N
{k, 1

k
}. By setting

α= k, the NM can use an operating policy that requires the s-club number decreases by at least

k for each vertex deleted. In settings where we are prepared to delete a large number of vertices

to decrease the s-club number, we can delete up to k times the decrease that we can produce by

setting α= 1/k.

1.3. Our Contributions

In this paper we focus on solving problem (1) using mixed-integer linear programming (MILP)

approaches. We first present an MILP formulation for the problem using standard interdiction

techniques. The formulation has important drawbacks from an implementation perspective, which

leads us to introduce the concept of H-heredity in s-clubs and study its implication for formulating

and solving problem (1). We derive several interesting properties of the constraints based on this

concept and use them to derive a more compact MILP reformulation of problem (1).

Specifically, this paper makes the following contributions to the literature of adversarial commu-

nity disruptions, specifically, interdiction by deletion of vertices in maximum cardinality s-clubs.

(a) We introduce the new concept of H-hereditary s-clubs, which extends the notion of heredity

to s-clubs. Based on H-heredity, we introduce an MILP formulation of the s-club interdiction

problem that has fewer constraints than the naive MILP formulation that is based on standard

interdiction formulation techniques.

(b) We show that the LP relaxation of the proposed formulation does not have redundant con-

straints. We also derive three types of facet defining inequalities for the convex hull of feasible

solutions by further strengthening the new constraints based on H-heredity for special s-clubs.
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(c) We establish a one-to-one correspondence between the sets inducing H-heredity in an s-club

and latency-s connected dominating sets (latency-s CDSs) of the s-club (Validi and Buchanan

2020). We exploit this relationship in a decomposition branch-and-cut algorithm based on

delayed constraint generation. This approach is able to solve several real-life and synthetic

instances of the interdiction problem with more than 10,000 vertices in a matter of minutes.

Moreover, our approach solves the problem orders of magnitude faster than using an analogous

algorithm based on the naive MILP formulation.

The remainder of the paper is organized as follows. In Section 2 we present the naive MILP for-

mulation of the interdiction problem. Section 3 introduces the concept of H-heredity and presents

the proposed MILP reformulation developed based on this concept. In Section 4 we discuss the

relationship between s-club interdiction and latency-s CDSs and in Section 5 we describe our

decomposition algorithm. Section 6 reports the results of our numerical experiments and in Sec-

tion 7 we present our conclusions. The proofs of all the technical results are included in Appendix A

and additional experiments and results are discussed in Appendix B.

2. A Preliminary Formulation

An MILP formulation of problem (1) can be derived by using standard techniques in interdic-

tion (Fischetti et al. 2018, 2019, Smith and Song 2020). To this end, we use vectors x∈ {0,1}|V | as

incidence vectors of a deletion set, thus xv = 1 if v is deleted and zero otherwise. We let T x denote

the set of vertices deleted in solution x, thus T x = {v ∈ V | xv = 1}. Henceforth, we also use the

convenient short form x(S) in place of
∑

v∈S xv for S ⊆ V . In terms of x, problem (1) is given by:

zs,α = min
{
ω̄s(G \T x) +αx(V )

∣∣ x∈ {0,1}|V |} . (2)

The bilevel optimization problem (2) can be reformulated as the following single-level MILP:

zs,α = min θ+αx(V ) (3a)

s.t. θ≥ |S| − |S|x(S) ∀S ∈ S (3b)

x∈ {0,1}|V |, θ ∈R+, (3c)

where S is the collection of all s-clubs in G. The right-hand side of constraint (3b) becomes

redundant if a vertex in S is interdicted. Otherwise, the cardinality of the maximum s-club in the

interdicted graph G \T x should be at least |S|.

Although valid, the direct implementation of formulation (3) in an MILP solver is untenable

for large instances as it requires enumerating exponentially many s-clubs in G in the worst case.

Nevertheless, this formulation can be used in a delayed constraint generation algorithm as follows.
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Let S0 ⊆ S be an initial collection of s-clubs. In iteration i = 0,1, . . ., the algorithm solves the

master relaxation problem:

min
{
θ+αx(V )

∣∣ θ≥ |S| − |S|x(S) ∀S ∈ Si, x∈ {0,1}|V |, θ ∈R+

}
(4)

and recovers an optimal solution (θi, xi). If θi ≥ ω̄s(G\T x
i
) then it follows that (θi, xi) is an optimal

solution of problem (3), and the algorithm terminates. Otherwise, the algorithm identifies an s-club

S′ in G \T xi such that |S′|> θi and updates Si+1 := Si ∪{S′}.
Clearly, this delayed constraint generation algorithm converges to an optimal solution of prob-

lem (3) in a finite number of steps because S is a finite set. However, it has two important

limitations: First, each iteration requires solving an MILP master relaxation and the separation

problem involves solving the NP-hard maximum s-club problem in the interdicted graph. Second,

constraint (3b) will become redundant “easily” if any vertex in S is interdicted. (Contrast this

with the clique interdiction counterpart studied by Furini et al. (2019); if S were a clique in G,

the constraint would say θ≥ |S|−x(S) as the clique property is hereditary under vertex deletion.)

This behavior can result in weak LP relaxations and it is exacerbated in the presence of numerous

“nearly” identical s-clubs, each requiring the addition of a distinct constraint of the form (3b)

to the master problem. There is empirical evidence that having a large number of similar s-clubs

can be very detrimental for such delayed constraint generation approaches from a computational

perspective, especially when the generated constraint is arguably not very strong (Lu et al. 2018,

Moradi and Balasundaram 2018). In the following, we develop techniques that help alleviate the

aforementioned concerns by exploiting graph-theoretic properties of s-clubs.

3. Exploiting Heredity in s-Clubs

In this section, we discuss an alternative formulation for the s-club interdiction problem that

addresses the issues that arise from using constraints (3b) in a delayed constraint generation frame-

work. The formulation is based on the observation that removing vertices of an s-club does not

necessarily imply that the remaining vertices do not form an s-club. In other words, the formulation

exploits the fact that some s-clubs can be partially hereditary in the following sense.

Definition 2. Given a graph G = (V,E), an s-club S in G, and H ⊆ S, we say that S is an

H-hereditary s-club if diam(G[S \T ])≤ s for every T ⊆H.

Observe that every s-club is trivially ∅-hereditary. Furthermore, an s-club S could be simultane-

ously H-hereditary and J-hereditary where J and H are incomparable subsets of S. Therefore, we

are only interested in H-hereditary s-clubs of S for which H is maximal with respect to inclusion

of vertices from S \H. Given an H-hereditary s-club S, we refer to the partition {H,S \H} as

the H-partition of S and it is said to be non-trivial if H 6= ∅. Figure 2 illustrates this idea using

2-clubs. Pertinently, an s-club S can be S-hereditary (i.e., truly hereditary) if and only if S is a

clique.
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Figure 2 The set Ŝ = {1,2,3,4,5} is a 2-club that does not admit any non-trivial H-partitions. The 2-club

S̃ = {1,2,3,6,7,8} on the other hand is H̃-hereditary with H̃ = {2,3,6,7,8}.

3.1. Alternate Formulation Using Hereditary s-Clubs

Given an H-hereditary s-club S, define the following set:

Λ(S,H) :=
{

(θ,x)∈R+×{0,1}|V | | θ≥ |S| −x(H)− |S|x(S \H)
}
, (5)

and the following collection of subsets of vertices:

C(S,H) := {S \T | T ⊆H} . (6)

In other words, C(S,H) is the collection of all s-clubs generated from S by deleting every possible

subset of H and C(S,∅) = {S}. The following two lemmas provide the elements that help us improve

Formulation (3).

Lemma 1. Let S be an H-hereditary s-club and suppose that (θ,x)∈Λ(S,H). Then (θ,x) satis-

fies the following inequalities:

θ≥ |U | − |U |x(U) ∀U ∈ C(S,H). (7)

Based on Lemma 1, when we have two s-clubs U and S such that U ∈ C(S,H), we can replace

constraint (3b) corresponding to U by the constraint defining the set Λ(S,H) in (5) without

compromising the correctness of formulation (3). Hence, |C(S,H)| constraints of type (3b) can

be replaced by a single constraint. For example, the 2-club S̃ = {1,2,3,6,7,8} in Figure 2 is H̃-

hereditary for H̃ = {2,3,6,7,8}. Hence, we can replace constraints (3b) corresponding to all 2-clubs

obtained by deleting subsets of H̃ by the single constraint θ≥ |S̃| −x(H̃)− |S̃|x(S̃ \ H̃).

Remark 1. It is important to contrast the aforementioned discussion against incorrectly refor-

mulating (3) using Λ(S,H)-type constraints only for s-clubs that are maximal by inclusion. For

example, consider the 2-clubs Ŝ = {1,2,3,4,5} and Û = {2,4,5} in Figure 2. Although, Û ⊂ Ŝ, we

know that Û 6∈ C(Ŝ,H) for any non-empty H ⊆ Ŝ because Ŝ does not admit a non-trivial hereditary

partition. Therefore, the omission of the constraint θ≥ |Û | − |Û |x(Û) from the formulation would

be a mistake because the resulting objective value of the solution defined by xv = 1 for all v ∈ V \ Û

and xv = 0 for all v ∈ Û would be zero, rather than the correct objective value of |Û |.
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The notion of H-heredity leads us to consider the following in regards to the strength of the

Λ(S,H)-inequality. If the same s-club S is also J-hereditary, we obtain a different Λ(S,J)-inequality

that is also valid. Is there a particular choice of H that makes the resulting constraint tighter? In

this case, maximality of H with respect to inclusion of vertices from S is the answer. Given an

s-club S, we define the set H(S) as follows:

H(S) := {H ⊆ S | S is an H-hereditary s-club}. (8)

Because ∅ ∈H(S) for every s-club S in G, by our definition H(S) is always non-empty.

Lemma 2. Let S be an s-club such that H,J ∈H(S). If J ⊂H then Λ(S,H)⊆Λ(S,J).

Based on Lemmas 1 and 2, we can replace constraint (3b) for an s-club U with the tighter

constraint defining Λ(S,H) if U ∈ C(S,H), and we only require the constraint for H ∈H(S) that

is maximal with respect to inclusion of vertices from S, in order to preserve the correctness of the

MILP formulation. However, it should be noted that even if the collection H(S) is limited only to

maximal sets, there could be several such maximal elements (see example in Figure 3).

1
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6

Figure 3 H = {1} and J = {4,5} are maximal sets in H(S) = {{1},{4},{5},{4,5}} for the 2-club S =

{1,2,3,4,5,6}.

Let us define H∗(S) as the collection of maximal sets in H(S):

H∗(S) := {H ∈H(S) | there is no J ∈H(S) such that H ⊂ J}. (9)

Note that if S does not admit a non-trivial hereditary s-club description (e.g., Ŝ in Figure 2),

H∗(S) =H(S) = {∅}. We are now able to state the following result, which is an immediate conse-

quence of the foregoing results and observations.

Lemma 3. Given an s-club S in G= (V,E), define U(S) as follows:

U(S) :=
⋃

H∈H∗(S)

C(S,H), (10)
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where C(S,H) is defined in (6), and define Λ∗(S) as:

Λ∗(S) :=
⋂

H∈H∗(S)

Λ(S,H). (11)

If (θ,x)∈Λ∗(S), then (θ,x)∈Λ(S,H) for all H ∈H(S) and, moreover, (θ,x) satisfies

θ≥ |U | − |U |x(U) ∀U ∈ U(S). (12)

As a consequence of Lemma 3 we can replace all the constraints in Formulation (3) associated

with all the s-clubs in U(S) by |H∗(S)| stronger constraints to obtain Formulation (14) described

in Proposition 1 that follows. Depending on the particular s-club, such reduction in the number of

constraints can be very significant as illustrated by the following remark.

Remark 2. A vertex v and its neighbors, the closed neighborhood NG[v], is an NG(v)-hereditary

s-club for every s ≥ 2. Every possible subset of NG(v) is a deletion set T such that NG[v] \ T is

an s-club, corresponding to exponentially many constraints in Formulation (3). These can all be

replaced by a stronger constraint θ≥ degG(v) + 1−x(NG(v))− (degG(v) + 1)xv.

Proposition 1. Define C∗, the set of critical s-clubs in the graph G= (V,E), as follows:

C∗ = {S ∈ S |No s-club S′ ⊃ S exists such that S ∈ U(S′)}. (13)

The following is an equivalent reformulation of problem (3):

zs,α = min θ+αx(V ) (14a)

s.t. θ≥ |S| −x(H)− |S|x(S \H) ∀H ∈H∗(S),∀S ∈ C∗ (14b)

x∈ {0,1}|V |, θ ∈R+. (14c)

Besides having significantly less constraints, Formulation (14) does not have redundancies in the

sense that all constraints of the form (14b) are necessary in the description of the LP relaxation

of (14); see Proposition 3 in Section 3.2.Two other questions that arise regarding Formulation (14)

concern the strength of its LP relaxation and whether membership of an s-club in C∗ is easily

verifiable. Remark 3 that follows, shows that the LP relaxations of Formulations (3) and (14) are

incomparable. (Hence, both formulations are investigated computationally in Section 6.) Proposi-

tion 2 that follows provides an alternate characterization of s-clubs in C∗.

Remark 3. Let P and P ′ denote the LP relaxations of Formulations (14) and (3), respectively.

There are instances where P is not contained in P ′ and vice versa. In general, for s≥ 2, neither
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LP relaxation contains the other. To see that P ′ 6⊆ P , consider an s-club S ∈ C∗ and a non-empty

H ∈H∗(S) and construct the point (θ̂, x̂) as follows:

x̂v =


1, if v 6∈ S
0, if v ∈ S \H
1/2, if v ∈H,

and θ̂ = |S| − |H|. First we show that (θ̂, x̂) ∈ P ′. For any U ∈ S, define q(U,x) := |U |(1− x(U)),

the right-hand side of constraint (3b). If U \S is not empty, then q(U, x̂)≤ 0. On the other hand,

if U ⊆ S, we have q(U, x̂) = |U |(1− |U ∩H|/2). It follows that the maximum value of q(U, x̂) over

U ∈ S is |S| − |H|, achieved when U = S \H. Hence, the point (θ̂, x̂)∈ P ′. Furthermore, (θ̂, x̂) /∈ P

as it violates constraint (14b) for the chosen S and H when |H| ≥ 1.

To see that P 6⊆ P ′, we consider a more specific counter-example applicable for any s≥ 2. Suppose

that G= (V,E) is a five-vertex star with center 1 and leaves {2,3,4,5}. In this case, C∗ =
{
V
}

with

H∗(V ) =
{
V \ {1}

}
. The LP relaxation of Formulation (14) becomes:

min θ+αx(V )

s.t. θ≥ 5−x2−x3−x4−x5− 5x1,

x∈ [0,1]5, θ≥ 0.

Consider the point θ̄ = 13/12, x̄1 = 1/3, x̄2 = 0, x̄3 = x̄4 = x̄5 = 1. Observe that (θ̄, x̄) belongs to

P but does not belong to P ′ because Formulation (3) includes the constraint θ ≥ 2(1− x1 − x2)

corresponding to the s-club {1,2} that is violated by (θ̄, x̄).

Remark 4. For non-empty H, constraint (14b) can be tightened using a smaller ‘big-M’ coef-

ficient as θ ≥ |S| − x(H) − (|S| − 1)x(S \H) resulting in a valid formulation with a tighter LP

relaxation. However, the conclusion of Remark 3 that the LP relaxations are incomparable continues

to hold even using the modified constraint. This can be verified using the same counter-examples

as in Remark 3. As this modification did not improve the computational performance significantly

in our preliminary numerical experiments, we use constraint (14b) with the ‘big-M’ coefficient of

|S| for simplicity in the subsequent discussions and in our computational studies.

Another question of interest related to Formulation (14) is about the relationship between crit-

icality of an s-club as defined in Proposition 1 and maximality of an s-club (by vertex inclusion).

Proposition 2 we establish next shows that maximality is a stricter condition than criticality, that

is, every maximal s-club is also a critical s-club although the converse is not true. Consider the

example used earlier in Remark 1. The 2-club Ŝ = {1,2,3,4,5} in Figure 2 strictly contains the

2-club Û = {2,4,5}. The 2-club Ŝ is both critical and maximal, while Û is clearly not maximal by

inclusion. However, Û is critical according to the definition in Proposition 1 because Ŝ, which is the
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unique 2-club strictly containing Û , does not admit any non-trivial H-partitions. Indeed, criticality

is equivalent to a weaker requirement that we refer to as one-step maximality for convenience.

Definition 3. We say that an s-club S in graph G= (V,E) is one-step maximal if and only if

S ∪{v} is not an s-club for any v ∈ V \S.

Observe that if an s-club is maximal then it is also one-step maximal, but the converse is not

true. The 2-club Û is one-step maximal but it is not maximal by inclusion in the conventional

sense. It is also easy to see that for cliques and other hereditary properties, one-step maximality

is equivalent to inclusionwise maximality.

Proposition 2. Consider an s-club S in graph G = (V,E). Then, S ∈ C∗ if and only if S is

one-step maximal.

Although deciding if an s-club is maximal by inclusion is coNP-complete (Pajouh and Balasun-

daram 2012), Proposition 2 enables us to verify whether a given s-club S is critical in polynomial

time. Nonetheless, using Formulation (14) directly is not expected to be computationally viable

because it requires the enumeration of all s-clubs in C∗ and their maximal hereditary partitions

based on H∗(·). Pertinently, given an s-club S, the complexity of enumerating H∗(S) or identifying

a member in it is also unclear.

However, recall the discussion in Section 2 on a delayed constraint generation algorithm. In each

iteration i, such a sequential cutting plane method would maintain a collection of s-clubs Si ⊂ S
and for each S ∈ Si it would also maintain collections H̃(S) ⊂H(S). Then, the algorithm solves

the following master relaxation MILP (compare with master problem (4)):

zis,α = min
x∈{0,1}|V |
θ∈R+

{
θ+αx(V )

∣∣∣ θ≥ |S| −x(H)− |S|x(S \H) ∀S ∈ Si,H ∈ H̃(S)
}
. (15)

Denote the optimal solution found by (θi, xi), we proceed similarly by identifying an s-club S′

in the interdicted graph G \ T xi such that |S′|> θi, if it exists; otherwise, the solution is feasible

and optimal. If found, an important difference is that now, instead of adding the constraint θ ≥
|S′|−|S′|x(S′), we will seek to identify a member H ′ ∈H∗(S′) (if that is not possible, find a member

H ′ ∈H(S′)). Then, we can add the constraint θ ≥ |S′| − x(H ′)− |S′|x(S′ \H ′), update Si+1 with

Si ∪ {S′}, update H̃(S′) with H̃(S′)∪ {H ′}, and then re-solve the master relaxation. Alternately,

we could add a round of constraints by enumerating multiple members of H(S′). Nonetheless, the

Λ(S′,H) inequality is violated by (θi, xi) for every H ∈H(S′) as xi(S′) = 0; recall that the s-club

S′ was found in the interdicted graph.

The foregoing discussion highlights the important considerations when separating Λ(S,H)-

inequalities. In particular, how can we detect an H ∈H∗(S)? We address this question in Section 4.

We close this section by discussing polyhedral properties of the LP relaxation and of the convex

hull of feasible solutions of Formulation (14).
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3.2. Facial Structure of Associated Polyhedra

First, we show that the LP relaxation of Formulation (14) has no redundant constraints, then we

show three types of facets of the convex hull of the formulation based on maximal cliques, critical

stars, and critical edge stars of G under an additional assumption of independence among some

vertices in the s-club.

Proposition 3. Every constraint (14b) induces a facet of the LP relaxation polyhedron of (14).

The result in Proposition 3 indicates the importance of critical s-clubs in C∗ (and the maximal

members in H∗(S) for every critical s-club S) in formulating this problem. It further emphasizes

the fact that no constraint of type (14b) is dominated by another of this type in the associated

LP relaxation. This result also motivates the facets of the convex hull of feasible solutions to

Formulation (14) we derive based on specially structured s-clubs. These results are presented next.

Let P denote the convex hull of the set of feasible solutions of Formulation (14). As it is to be

expected, constraints (14b) do not yield facets of P in general because of the ‘big-M’ type constant

|S| in the constraint. To identify facets of P, we begin with an inequality that is known to induce

a facet of the clique interdiction counterpart. Furini et al. (2019) formulate the clique interdiction

problem (with an interdiction budget instead of a penalty) using the following constraints:

θ≥ |K| −x(K) ∀K ∈K, (16)

where K is the collection of all cliques in G. Because the clique property is hereditary, there is no

need for a ‘big-M’ coefficient in constraint (16) to make the constraint redundant if a vertex in K

is interdicted. Furini et al. (2019) further show that inequality (16) induces a facet of the convex

hull of feasible solutions to their budget-constrained clique interdiction problem under suitable

conditions, one of which is the maximality of clique K.

Cliques are s-clubs for every s≥ 2 and remain so if some vertices are interdicted. So the inequal-

ity (16) is valid for the s-club interdiction problem as well, and it is reasonable to ask if they induce

facets when the clique K satisfies some additional requirement (like maximality). Next, we provide

a result that generalizes these facets to s-clubs, for any s≥ 2.

For a given subset of vertices Q⊆ V , let PQ denote the face of the convex hull P in which the

vertices of Q are not interdicted, that is, PQ = P ∩ {(θ,x) | xv = 0 ∀v ∈ Q} (see Appendix A.7

regarding the “zero facets” of P). One can consider PQ as the convex hull of interest at a node of

a branch-and-cut tree where the variables corresponding to Q have been fixed to zero. However,

we are more interested in the case where Q= S \H for some H-hereditary s-club S when certain

facets of PQ can be readily derived, as shown next.
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Theorem 1. Let S ∈ C∗ be an H-hereditary s-club. Then the following inequality is valid for

PS\H and induces a facet of PS\H for any positive integer s:

θ≥ |S| −x(H). (17)

Although H is not required to be a maximal member of H(S) for Theorem 1 to hold, it is

relevant in the following sense. Such an inequality is valid (without lifting the variables in S \H)

only locally in the nodes of a branch-and-cut tree where the corresponding variables have been

fixed to zero. It could therefore be argued that larger H ∈H(S) will make this inequality usable

higher up in the branch-and-cut tree where it could be even more effective.

This observation leads us to consider the special case S = H, where (17) is valid for P and

induces a facet if S ∈ C∗. Recall from the discussions following Definition 2 that S is S-hereditary

only if it is a clique, in which case inequality (17) is precisely inequality (16) for clique S. If s= 1

and we consider clique interdiction, this inequality induces a facet of P if the clique S ∈ C∗. We also

know from Proposition 2 that the 1-club (clique) S ∈ C∗ if and only if it is one-step maximal. As

clique is a hereditary property, this is equivalently saying that the clique S must be inclusionwise

maximal for inequality (17) to induce a facet of P. Therefore, the special case of Theorem 1 with

H = S and s= 1 extends the result of Furini et al. (2019) to our setting with interdiction penalty.

Now consider the same special case S =H but with s≥ 2. For a clique S to be a critical s-club,

i.e., a one-step maximal s-club, no vertex in V \S can be adjacent to a vertex in S; otherwise, such

a vertex along with vertices in S forms an s-club for any s≥ 2. Thus, we can conclude that if S

is clique that induces a maximal connected component of the graph G, inequality (17) induces a

facet of P for any s≥ 2. We can now see Theorem 1 as a generalization of the result of Furini et al.

(2019) to s-club interdiction under interdiction penalty for any s≥ 2. It should be noted, however,

that the criticality requirement on the clique is a very restrictive condition when s≥ 2, as the clique

must form a connected component by itself. It turns out, as the following theorem established by

a direct proof shows, that it is sufficient for the clique S to be maximal with respect to the clique

property (and not necessarily critical with respect to the s-club property) for inequality (16) to

induce a facet of P for any s≥ 2.

Theorem 2. Given a graph G = (V,E), a positive integer s, and an inclusionwise maximal

clique S in G, the following inequality is valid for P and induces a facet of P:

θ≥ |S| −x(S). (18)

Because enumerating maximal cliques is not computationally desirable given that there could

be exponentially many in a graph (Moon and Moser 1965), we do not explicitly make use of this

facet in our computational studies. However, the next two results—based on specially structured

s-clubs—are interesting to us from a computational perspective.
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Theorem 3. Given a graph G= (V,E) and an integer s≥ 2, suppose that for some vertex v ∈ V
the closed neighborhood of v forms a critical s-club. That is, NG[v]∈ C∗, a critical star centered at

v. If NG(v) is an independent set, the following inequality is valid and induces a facet of P:

θ≥ degG(v) + 1−x(NG(v))−degG(v)xv. (19)

This inequality can be viewed as a strengthening of the coefficient of xv in constraint (14b) with

S =NG[v] and H =NG(v). Theorem 4 that follows is similar to Theorem 3, and is based instead on

critical edge stars, i.e., sets of the form NG(u)∪NG(v) where {u, v} ∈E. Due to the asymmetry in

the coefficients of xu and xv, in general Theorem 4 corresponds to two facet-inducing inequalities

obtained by interchanging vertices u and v.

Theorem 4. Given a graph G= (V,E) and an integer s≥ 3, consider adjacent vertices u and

v such that NG(u)∪NG(v) \ {u, v} is a non-empty independent set. If NG(u)∪NG(v)∈ C∗, then

θ≥ degG(u) + degG(v)− cuv −x(Luv)− [degG(u)− cuv]xu− [degG(v)−min(cuv,1)]xv (20)

is valid and induces a facet of P, where Luv :=NG(u)∪NG(v) \ {u, v} and cuv := |NG(u)∩NG(v)|.

Many real-life social and biological networks demonstrate a power law degree distribution and

are also extremely sparse in terms of edge density (Chung and Lu 2006, Newman 2003, Barabási

and Albert 1999). So it is not uncommon in practice to find vertices and edges with a large number

of independent neighbors in sparse real-life graphs, such as those used in our computational study.

Nonetheless, we also do not recommend strictly testing the satisfaction of the sufficient conditions

in order to add the critical vertex and edge star facets during computations. These two results

essentially serve to motivate our emphasis on vertex and edge stars in building the master relaxation

of Formulation (14) used in our delayed constraint generation algorithm discussed in Section 5.

4. Hereditary s-Clubs and Latency-s Connected Dominating Sets

Given a graph G= (V,E), we say that D⊆ V is a dominating set if every vertex outside D has a

neighbor in D. We say that D is a connected dominating set if in addition, G[D] is connected. In

essence, a connected dominating set ensures that every pair of distinct vertices outside the domi-

nating set have a path connecting them (whose internal vertices are contained in the dominating

set). The connection to hereditary s-clubs, while not obvious, arises when we require distance

bounds in addition to connected domination. Definition 4 below is adapted from its counterpart

for directed graphs introduced by Validi and Buchanan (2020).

Definition 4 (Validi and Buchanan (2020)). Given a graph G = (V,E), a subset of ver-

tices D is called a latency-s connected dominating set (latency-s CDS) if it is a dominating set in

G and for every pair of distinct vertices in V there exists a path of length at most s whose internal

vertices belong to D.
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If D is a latency-s CDS, then it is a dominating set that is also an s-club. Note that the length-

bounded path requirement applies to vertex-pairs inside D as well. Clearly, a dominating s-club is

not necessarily a latency-s CDS (see Figure 4a). It is also easy to see that a dominating (s−2)-club

is a latency-s CDS. However, a latency-s CDS is not necessarily a dominating (s− 2)-club (see

Figure 4b).

1 2 3

4 5 6

(a)

1

2

3

4

5

6

(b)

Figure 4 (a) Set {1,2,3} forms a dominating 2-club, but it is not a latency-2 CDS since the length of the path

between vertices 5 and 6 is 4. (b) Set {1,2,3} forms a latency-3 CDS. (Note that vertices 4 and 6 are

adjacent and vacuously satisfy the requirement.) Clearly, it is not a 1-club (clique).

Given an s-club S in graph G= (V,E), we say that D is a “latency-s CDS over S” if and only

if D is a latency-s CDS in the induced subgraph G[S]. In general, a graph G has a latency-s CDS

if and only if diam(G)≤ s. The necessity can be deduced from the fact that every pair of vertices

must be connected by a path of length at most s, in order for a latency-s CDS to exist. Conversely,

if diam(G)≤ s we know that V is a latency-s CDS. A meaningful optimization problem therefore is

to find a latency-s CDS of minimum cardinality. The notion of a latency-s CDS is relevant to s-club

interdiction because of its close relationship to hereditary s-clubs as crystallized in the following

result.

Proposition 4. Consider a graph G= (V,E) in which S is an s-club and H ∈H(S) such that

H 6= S. Then S \H is a latency-s CDS over S. Conversely, suppose that a non-empty D⊆ S is a

latency-s CDS over S. Then S \D ∈H(S).

Proposition 4 allows us to find large subsets H ∈H(S) by equivalently finding small latency-s

CDSs. Hence, when identifying violated constraints in our delayed constraint generation approach,

we can replace the problem of finding a large H ∈H(S) by finding a minimum cardinality latency-s

CDS sets in S. By framing the problem in this manner we can exploit existing methods to solve

the minimum latency-s CDS problem (Validi and Buchanan 2020).
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5. Implementing a Decomposition Branch-and-Cut Algorithm

Based on the results of Sections 3 and 4, our approach to solve Formulation (14) employs delayed

constraint generation in a decomposition and branch-and-cut (DBC) framework. This DBC algo-

rithm starts by solving a master relaxation of Formulation (14) where C∗ in constraint (14b) is

replaced by an initial collection of s-clubs S0 ⊆ S. As this master relaxation is solved using an

LP relaxation based branch-and-cut (BC) algorithm, nodes are pruned as usual by infeasibility or

by bound. However, if the LP relaxation optimum (θi, xi) at some BC node i is integral, we must

verify its feasibility.

Algorithm 1: Separation procedure

Input: Integral LP optimum (θ̂, x̂) at the DBC node.

Output: (S,H), where S is an H-hereditary s-club corresponding to a violated constraint,

if one exists.

1 S← a maximum s-club in G \T x̂

2 if |S|> θ̂ then
3 D← a minimum latency-s CDS in G[S]

4 return (S,S \D)
5 else

6 (θ̂, x̂) is feasible

To this end, we can solve a separation subproblem in order to verify if a constraint of type (14b)

corresponding to some H-hereditary s-club S is violated. First, we find a maximum s-club in the

interdicted graph, say S. If ω̄s(G \ T x
i
) = |S|> θi, we must add a violated constraint to eliminate

this solution. In order to find an H ∈ H(S), based on Proposition 4, we can solve the minimum

latency-s CDS problem on the subgraph G[S]. If H(S) is empty, then the minimum latency-s CDS

will be S itself, and we add constraint (3b) for S. After the violated constraint is added, the LP

relaxation at node i is re-solved. If ω̄s(G \ T x
i
) = |S| ≤ θi, no violated constraint exists, we can

certify that the integral solution (θi, xi) is feasible to the original problem and prune that BC node.

This separation routine is described in Algorithm 1.

The separation subproblem ensures the correctness of the overall algorithm despite starting with

a relaxation of the original problem. From our experiments, we found that the DBC algorithm

typically generates far fewer constraints than all possible constraints of type (14b). In the following

we discuss how we initialize the master relaxation in our computational study described in Section 6,

as well as specify some additional implementation details of the heuristic separation procedure

used in our experiments when s= 2 and s= 3.
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5.1. Implementation Details for 2-club Interdiction

When solving the 2-club interdiction problem, we initialize the master relaxation with constraints

based on stars in G (see Remark 2). We write the constraints for the star NG[v] centered at v, with

the hereditary subset H = NG(v). This choice of H is maximal as long as NG[v] is not a clique.

Hence, the master relaxation constraints have the following form:

θ≥ degG(v) + 1−x(NG(v))− (degG(v) + 1)xv. (21)

In our experiments, we add constraint (21) only for those vertices that correspond to the top 20%

of the largest degrees in G.

Once a maximum 2-club S that corresponds to a violated constraint is found, we use a simpler

heuristic approach to identify a hereditary subset for the case of s= 2, instead of finding a minimum

latency-s CDS inside G[S] (line 3 of Algorithm 1). This simplification is based on the observation

that if G[S] contains a dominating vertex v, then the set {v} is a latency-2 CDS and S is a

S \ {v}-hereditary 2-club. In fact, if S is not a clique, then {v} is a minimum latency-2 CDS of

G[S].

Algorithm 2 outlines the pseudocode of a heuristic separation procedure for s= 2 that does not

rely on solving the minimum latency-s CDS problem. If we find any vertex v that dominates G[S],

we return immediately having identified a strong violated constraint. Otherwise, we find all the

leaves L in G[S] and S \L is a feasible latency-2 CDS. If no leaves exists, then L is empty, and

we effectively add a constraint of type (3b). In all three cases, note that the constraint identified

will be violated by (θ̂, x̂). This heuristic separation procedure was found to be effective for the case

s= 2 in our computational studies.

5.2. Implementation Details for 3-club Interdiction

In this case, the initial set S0 of 3-clubs includes the constraints associated with edge stars cor-

responding to S :=NG(u)∪NG(v) for each {u, v} ∈ E, with H =NG(u)∪NG(v) \ {u, v}. Clearly,

H ∈H(S), and H would belong to H∗(S) unless H ∪{u} ∈H∗(S), H ∪{v} ∈H∗(S), or H ∪{u, v} ∈

H∗(S). In other words, H is at most two elements short of a maximal member of H(S) in case it

is not in H∗(S). The constraint of type (14b) specializes to the following for edge stars:

θ≥ |S| −x(S \ {u, v})− |S|(xu +xv) ∀{u, v} ∈E. (22)

As every 2-club is also a 3-club, we also add constraint (21) for all the vertices in G. In general,

the star constraints are not dominated by edge star constraints (22).
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Algorithm 2: Separation algorithm for s= 2

Input: Integral LP optimum (θ̂, x̂) at the DBC node.

Output: (S,H), where S is a H-hereditary 2-club corresponding to a violated constraint, if

one exists.

1 S← a maximum 2-club in G \T x̂

2 if |S|> θ̂ then
3 L←∅

4 for v ∈ S do
5 if |NG[S](v)|= |S| − 1 then
6 return (S,S \ {v})
7 if |NG[S](v)|= 1 then
8 L←L∪{v}

9 return (S,L)
10 else

11 (θ̂, x̂) is feasible

6. Computational Experiments

In this section, we report on the results of our numerical experiments designed to assess the capabil-

ities of the proposed DBC algorithm to solve the s-club interdiction problem on real and synthetic

benchmark instances. All experiments are conducted on a 64-bit Windowsr 10 Pro machine with

16GB of RAM and 1.8 GHz processor with 7 cores. All algorithms are implemented in C++, com-

piled using Microsoftr Visual Studior 2017, and GurobiTM Optimizer v9.0.2 is used to solve the

MILPs (Gurobi Optimization, LLC 2021). Our codes are publicly available (Daemi et al. 2021a,b).

Our testbed consists of two groups of instances. Group-1 contains 22 graphs from the Tenth

DIMACS Implementation Challenge (DIMACS-10), see (Dimacs 2012). Group-2 contains 18

graphs taken from the following online repositories: Stanford Large Network Dataset Collec-

tion (SNAP) (Leskovec and Krevl 2014), the BGU Social Networks Security Research Group

(BGU) (Lesser et al. 2013), the Koblenz Network Collection (KONECT) (Kunegis 2013) and the

Network Repository (NR) (Rossi and Ahmed 2015). Most of the instances in our testbed come

from real-world networks. Further, the instances Gplus, Facebook1, Facebook2, and Douban in

Group-2 represent snapshots of real online social networks. The instances in Group-2 were also

used in the computational studies in Raghavan and Zhang (2019).

Tables 1 and 2 list all the graphs in our testbed. We converted the directed graphs in our testbed

to undirected graphs by ignoring the orientation on the arcs. For each instance we list the number

of vertices, edges, and the edge density ρ(G) = |E|/
(|V |

2

)
. To solve the maximum s-club problem

during separation, we use the “ICUT” algorithm introduced by Salemi and Buchanan (2020), the
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code for which has been made publicly available by the authors. ICUT is an effective integer

programming based exact solver for the maximum s-club problem for general values of s on the

instances we use in our testbed. It sequentially solves the maximum s-club problem on several

smaller subgraphs using a delayed constraint generation framework. Tables 1 and 2 report the time

it takes to find ω̄2(G) and ω̄3(G) using the ICUT solver. TL in the Time column indicates that the

solver terminated by reaching the time limit.

Using the Gurobi parameter GRB DoubleParam Timelimit, we impose a time limit of 3600 sec-

onds on the solve time of the master problem, and the same time limit on each call to solve the

maximum s-club subproblems in ICUT and the minimum latency-s CDS problem during the sep-

aration procedure. Reaching the time limit while solving any of these problems will terminate the

overall algorithm (usually quickly), in which case we have failed to solve the problem to optimal-

ity on that instance. We also use the Gurobi parameter LazyConstraint to add the the violated

constraints found in the separation procedure on-the-fly.

As discussed in Section 5, the DBC algorithm requires solving the maximum s-club problem

several times, once for every integral solution (θ̂, x̂) that is found in the BC tree to verify its

feasibility. Therefore, if solving the maximum s-club problem requires a significant amount of time

for a given graph, then we do not expect the interdiction problem to be solved in a reasonable

amount of time. More critically, reaching the time limit on the maximum s-club solver without

producing a violated s-club affects the overall correctness. For this reason, we only consider those

instances in the larger test bed described next on which we can find a large enough s-club in

reasonable time using our chosen solver. As it can be seen in Tables 1 and 2, all instances in Group-

1 are solved within a reasonable time (less than 5 minutes) for both s= 2 and s= 3. For Group-2,

all the instances except Douban are solved to optimality when s = 2. However, when s = 3, only

9 out of 18 instances are solved to optimality within the time limit, and among these instances,

Advogato and Facebook1 requires a significant amount of time. For this reason, when s= 2, we

do not include instance Douban in our experiments and when s= 3, for instances in Group-2, we

use heuristic approaches to find the maximum 3-club and the minimum latency-3 CDS instead of

using the exact methods we implement in other cases.

In Section 6.1, we use the Group-1 instances to show how the naive Formulation (3) and For-

mulation (14) based on hereditary s-clubs compare when each is used in the DBC algorithm. In

Sections 6.2 and 6.3, we present the results of our experiments with both groups of instances using

the best performing DBC algorithm and heuristic approaches.

6.1. The Impact of Using the H-hereditary s-club Formulation

In Section 3.1, we introduced the idea of partitioning an s-club S into a hereditary subset H and

S \H in order to generate a constraint of type (14b). Here, we assess the impact of using these
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Table 1 DIMACS-10 instances in Group-1 and the time taken to solve the maximum s-club problem for s= 2,3

using the ICUT algorithm. Instances celegansneural, celegans-metabolic, and PGPgiantcompo are shortened to

celegansn, celegansm, and PGP, respectively, in the other tables.

Graph G |V | |E| ρ(G) (%) ω̄2(G) Time (s) ω̄3(G) Time (s)

karate 34 78 13.90 18 0.01 25 0.00
dolphins 62 159 8.41 13 0.14 29 0.02
lesmis 77 254 8.68 37 0.00 58 0.00
polbooks 105 441 8.08 28 0.09 53 0.00
adjnoun 112 425 6.84 50 0.00 82 0.19
football 115 613 9.35 16 0.84 58 1.52
jazz 198 2,742 14.06 103 0.42 174 0.05
celegansneural 297 2,148 4.89 135 0.02 243 0.37
celegans-metabolic 453 2,025 1.98 238 0.02 371 0.10
email 1,133 5,451 0.85 72 6.89 212 65.69
polblogs 1,490 16,715 1.51 352 30.82 776 31.43
netscience 1,589 2,742 0.22 35 0.02 54 0.02
add20 2,395 7,462 0.26 124 0.17 671 0.23
data 2,851 15,093 0.37 18 13.27 32 15.51
uk 4,824 6,837 0.06 5 12.32 8 13.86
power 4,941 6,593 0.05 20 0.68 30 0.69
add32 4,960 9,462 0.08 32 0.48 99 0.50
hep-th 8,361 15,751 0.05 51 1.34 120 41.66
whitaker3 9,800 28,989 0.06 9 66.50 15 90.78
crack 10,240 30,380 0.06 10 81.95 17 96.06
PGPgiantcompo 10,680 24,316 0.04 206 4.07 422 4.30
cs4 22,499 43,858 0.02 6 165.26 12 236.51

Table 2 Instances in Group-2 and the time taken to solve the maximum s-club problem for s= 2,3 using the

ICUT algorithm.

Graph G Source |V | |E| ρ(G)(%) ω̄2(G) Time (s) ω̄3(G) Time (s)

G04 SNAP 10,876 39,994 0.07 104 4.89 ≥ 181 TL
G05 SNAP 8,846 31,839 0.08 89 9.96 ≥ 258 TL
G06 SNAP 8,717 31,525 0.08 116 3.64 ≥ 243 TL
G08 SNAP 6,301 20,777 0.10 98 23.08 453 464.72
G09 SNAP 8,114 26,013 0.08 103 20.93 449 945.33
B-Alpha SNAP 3,783 14,124 0.20 512 0.66 1,294 626.06
B-OTC SNAP 5,881 21,492 0.12 796 1.36 ≥ 1,969 TL
AS01 SNAP 10,670 22,002 0.04 2,313 15.25 4,997 613.26
AS02 SNAP 10,900 31,180 0.05 2,344 15.89 5,352 202.68
Ning BGU 10,298 40,887 0.09 688 4.29 ≥ 2,294 TL
Hamsterster Konect 1,858 12,534 0.78 273 0.18 680 89.18
Escorts Konect 10,106 39,016 0.08 312 4.32 ≥ 679 TL
Anybeat N.R. 12,645 49,132 0.06 4,801 9.17 ≥ 7,752 TL
Advogato N.R. 6,551 39,432 0.31 808 1.64 2,193 1,937.74
Gplus Konect 23,613 39,194 0.01 2,762 9.99 ≥ 4,767 TL
Facebook1 BGU 39,446 50,228 0.01 1,366 27.45 11,542 2,136.21
Facebook2 Konect 2,888 2,981 0.07 770 0.13 1,241 0.18
Douban N.R. 154,908 327,162 0.00 ≥ 288 TL ≥ 911 TL

constraints by comparing three different methods. In the first method a constraint of type (3b)

is used in the initialization and during separation (Method 1). The second method uses the H-

hereditary s-club constraint (14b) in the initialization of the master relaxation and constraint (3b)



Daemi, Borrero, and Balasundaram: Interdicting Low-Diameter Cohesive Subgroups 21

during separation (Method 2). The third method uses constraint (14b) during initialization and

separation (Method 3). In all three methods we initialize S0 by creating a set of s-clubs in the form

of stars (when s= 2,3) or edge stars (when s= 3), and add a constraint for each s-club in S0 to

initialize the master relaxation. Note that the type of the constraint we add for each s-club in S0

depends on the method, as explained before. We compare the performance of these three methods

in terms of running time and visualize the comparison using performance profiles (Dolan and Moré

2002).

In order to construct a performance profile, we define I as the set of the instances in our testbed,

M as the set of methods, and ti,m as the running time of solving the instance i by method m. The

baseline of the comparison is the shortest running time among three methods for every instance, and

we compute the performance ratio as ri,m = ti,m/t
∗
i , where t∗i = min{ti,m :m∈M}. Then, for every

method m, we define fm(τ) as the empirical cumulative distribution function of the performance

ratio ri,m. As stated in Equation (23), fm(τ) is the fraction of the instances in our testbed that

were solved by method m within a factor τ of the fastest solve-time for that instance.

fm(τ) =
|{i∈ I : ti,m ≤ τt∗i }|

|I|
. (23)

If we observe that fm(τ)≥ fm′(τ) for all τ ≥ 1, then there is evidence to suggest that method m is

better than m′ on this testbed. In particular, fm(1.0) is the fraction of the instances in the testbed

for which method m is the fastest.

Figure 5 shows the performance profiles of Method 1, Method 2, and Method 3 for all the instances

in Group-1 for s = 2. We selected α = 0.5 and α = 2 for these experiments, meaning that in the

former setting it is cheap to interdict vertices (i.e., for every two interdicted vertices the maximum s-

club in the interdicted graph should reduce by at least one) while in the latter setting it is expensive

to interdict vertices (i.e., for every interdicted vertex the maximum s-club in the interdicted graph

should reduce by at least two).

It can be seen that for both values of α, Method 3 is significantly better than Methods 1 and 2

on this testbed for s = 2. The performance of Method 2 is generally within 10 times the fastest

running time, while Method 1 has a far worse performance overall, achieving 10 times the fastest

running time only for for less that 50% of the instances.

The performance profile for s= 3 is shown in Figure 6. As before, Method 3 has the best perfor-

mance on this testbed. Method 2 performs worse than it did when s= 2, because there are about

5% of the instances whose solution times are not within 100 times the fastest running time when

α= 2. Method 1, on the other hand, has a similarly poor performance now, as it was the case with

s= 2.
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Figure 5 Performance profile based on the running time of methods for s= 2 and α∈ {0.5,2}.

These comparisons show that, in general, Method 3 outperforms the other two methods. This

observation confirms that using constraints based on H-hereditary s-clubs at initialization and

during separation can significantly improve the performance of our DBC algorithm. Therefore, we

use this method in the remaining computational experiments in Sections 6.2 and 6.3.

Before discussing the results of our main experiments with Method 3, we should mention that

we evaluated its performance by conducting two other experiments reported in greater detail in

Appendix B. First, a root node performance comparison between Method 1 and Method 3. The

results show that Method 3 outperforms Method 1 by providing the same or smaller gaps and

objective values for nearly all the instances (see Appendix B.1). We also evaluated the dependency

of Method 3 on primal heuristics built into the Gurobi solver, comparing its performance with and

without these heuristics. Neither choice consistently offers superior performance, and we discuss

this in greater detail in Appendix B.2.

6.2. Results for Group-1 Instances

We report on the results obtained for the instances in Group-1 for s ∈ {2,3} and α ∈ {0.5,1,2}

using Method 3 in this section. For each instance we report the number of interdicted vertices under

x(V ), the s-club number of the interdicted graph under θ, the total number of BC nodes explored,

the total number of separation callbacks under #CB, the total number of violated constraints
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Figure 6 Performance profile based on the running time of methods for s= 3 and α∈ {0.5,2}

added under #Cuts (broken down by each type when s= 2 under Star, Leaf, Regular), the total

running time, the total time taken to solve the maximum s-club problem, the total time taken

to solve the minimum latency-s CDS problem (when s = 3), and the relative optimality gap at

termination.

Tables 3, 4, and 5 show the results for α= 2,1, and 0.5, respectively, with s= 2. All the instances

are solved to optimality under a one hour time limit with the exception of jazz and polblogs

that are not solved to optimality for any value of α. We can observe in Table 1 that for most of the

instances the 2-club number of the original graph ω̄2(G) tends to be much larger than the 2-club

number after interdiction (i.e., θ) for all values of α we consider. For example, the values of ω̄2(G)

in the original graph for celegans-metabolic and PGPgiantcompo are respectively 238 and 206,

while they decrease to 32 and 76 after interdiction when α= 2. These values further decrease to 10

and 47 as α= 0.5 because interdiction is cheaper in this case. However, when ω̄2(G) is very small

compared to |V |, we find θ to be almost equal to ω̄2(G). Consider the instance cs4 as an example,

with ω̄2(G) = 6. The 2-club number of this graph remains the same after interdiction for all values

of α we considered (note that this instance has 22,449 vertices).

Another observation is that for most of the instances, decreasing the value of α from 2 to 0.5

makes the instance more difficult to solve and as a result, the number of BC nodes explored and
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running times increase. For example, when α = 2, football is solved in the root node in 3.07

seconds, while for α= 0.5, the number of explored nodes is 973,384 and the running time increases

to 92.14 seconds. This behavior could be due to the fact that as α decreases, interdiction is cheaper

and there are many more feasible solutions of high quality distributed across the BC tree, thereby

resulting in far fewer BC nodes being pruned.

Table 3 Results for Group-1 instances with s= 2 and α= 2 using Method 3.

Graph G x(V ) θ #BC nodes #CB Star Leaf Regular Total time (s) s-club time (s) Gap (%)

karate 3 9 1 5 0 0 3 0.08 0.01 0.00
dolphins 0 13 1 2 1 0 0 0.10 0.06 0.00
lesmis 2 18 1 4 1 0 0 0.38 0.01 0.00
polbooks 1 25 1 14 4 0 8 0.70 0.45 0.00
adjnoun 6 14 1 5 1 0 0 0.56 0.46 0.00
football 0 16 1 12 0 0 10 3.07 3.01 0.00
jazz 5 71 37,284 4,735 1 0 4,731 TL 3570.47 16.17
celegansn 12 36 63 8 1 0 3 7.18 6.87 0.00
celegansm 13 32 21 4 1 0 0 0.33 0.03 0.00
email 1 52 1 3 1 0 0 12.37 12.11 0.00
polblogs 21 154 1,180 100 2 0 92 TL 3607.45 18.67
netscience 3 21 1 3 1 0 0 0.16 0.04 0.00
add20 14 68 32 5 1 0 0 6.88 0.81 0.00
data 0 18 0 2 0 0 1 7.64 7.58 0.00
uk 0 5 1 8 0 0 7 29.93 29.76 0.00
power 2 15 1 3 0 0 1 1.74 1.60 0.00
add32 0 32 1 2 1 0 0 0.76 0.63 0.00
hep-th 3 40 1 3 1 0 0 3.87 3.05 0.00
whitaker3 0 9 0 2 1 0 0 48.23 47.96 0.00
crack 0 10 1 2 1 0 0 38.09 37.86 0.00
PGP 11 76 79 6 4 0 0 26.46 20.02 0.00
cs4 0 6 1 6 0 0 5 407.60 405.63 0.00

Tables 6, 7, and 8 report our results for 3-club interdiction with α= 2,1, and 0.5, respectively.

The number of instances that are solved to optimality within the time limit are 14, 13, and 12 for

α= 2,1, and 0.5, respectively. (By contrast, 20 out of the 22 graphs for all three values of α were

solved to optimality for 2-club interdiction.) In general, we observe that the 3-club interdiction

problem is significantly more difficult to solve than its 2-club counterpart. When solving the 3-club

interdiction problem using Method 3, we invoke separation more frequently and each callback to

the separation problem takes more time to finish.

During separation, the maximum 3-club problem takes more time to solve than the maximum

2-club problem on our testbed (see Table 1 for instances where the difference is significant). But

more importantly, on each maximum 3-club we find, the algorithm now solves the latency-3 CDS

problem as opposed to the heuristic used for s= 2. We find that the instances that were not solved

to optimality also typically have significantly larger running times for finding a latency-3 CDS,

compared to those instances that we do solve to optimality.
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Table 4 Results for Group-1 instances with s= 2 and α= 1 using Method 3.

Graph G x(V ) θ #BC nodes #CB Star Leaf Regular Total time (s) s-club time (s) Gap (%)

karate 5 5 1 9 3 0 4 0.12 0.01 0.00
dolphins 0 13 34 4 2 0 1 0.27 0.12 0.00
lesmis 8 10 57 10 4 0 3 0.16 0.01 0.00
polbooks 13 12 144 12 6 0 3 0.42 0.14 0.00
adjnoun 6 14 23 6 1 0 0 1.01 0.80 0.00
football 0 16 1 14 0 0 11 3.52 3.42 0.00
jazz 21 45 74,282 6,389 22 0 6,361 TL 3598.92 10.42
celegansn 21 23 175 6 1 0 0 4.24 3.92 0.00
celegansm 21 18 54 5 1 0 0 0.35 0.05 0.00
email 8 42 49 3 1 0 0 12.72 11.38 0.00
polblogs 113 55 972 140 1 0 135 TL 3737.62 30.78
netscience 3 21 1 3 1 0 0 0.17 0.04 0.00
add20 30 49 281 5 2 0 0 8.98 0.64 0.00
data 0 18 1 2 0 0 1 7.83 7.69 0.00
uk 0 5 1 8 0 0 7 30.01 29.85 0.00
power 2 15 1 3 0 0 1 1.83 1.65 0.00
add32 0 32 1 2 1 0 0 1.12 0.64 0.00
hep-th 5 36 1 3 1 0 0 4.79 3.55 0.00
whitaker3 0 9 0 2 1 0 0 47.18 46.99 0.00
crack 0 10 1 2 1 0 0 34.91 34.65 0.00
PGP 24 62 325 5 1 0 2 44.54 25.98 0.00
cs4 0 6 1 6 0 0 5 411.37 409.26 0.00

Table 5 Results for Group-1 instances with s= 2 and α= 0.5 using Method 3.

Graph G x(V ) θ #BC nodes #CB Star Leaf Regular Total time (s) s-club time (s) Gap (%)

karate 8 3 41 17 11 0 3 0.16 0.01 0.00
dolphins 3 10 200 16 13 0 2 0.52 0.25 0.00
lesmis 10 8 90 18 16 0 0 0.52 0.04 0.00
polbooks 16 10 268 23 17 0 2 0.41 0.13 0.00
adjnoun 12 10 331 16 12 0 1 1.07 0.67 0.00
football 1 15 973,384 96 2 0 90 92.14 26.56 0.00
jazz 44 26 1,497,964 5,307 56 0 5,249 TL 1271.72 12.62
celegansn 23 21 2,214 13 7 0 2 6.18 5.61 0.00
celegansm 32 10 181 7 2 0 1 0.48 0.09 0.00
email 12 38 1,020 6 1 0 0 39.51 37.44 0.00
polblogs 125 42 452,127 138 1 0 116 TL 1976.77 2.19
netscience 3 21 206 3 1 0 0 1.20 0.04 0.00
add20 52 34 7,088 9 2 0 0 12.59 0.95 0.00
data 1 17 20 3 0 0 1 13.25 12.86 0.00
uk 0 5 1 8 0 0 7 29.07 28.87 0.00
power 2 15 1 3 0 0 1 2.01 1.59 0.00
add32 4 29 58 4 1 0 0 3.19 1.09 0.00
hep-th 18 29 412 4 2 0 0 10.95 6.34 0.00
whitaker3 0 9 1 2 1 0 0 47.00 46.72 0.00
crack 1 9 1 3 1 0 0 72.81 72.51 0.00
PGP 45 47 5,858 3 1 0 0 41.63 8.20 0.00
cs4 0 6 1 7 0 0 6 503.88 501.18 0.00

The number of calls to the separation routine, the number of cuts added, and the number of

BC nodes have increased on average when compared to what is observed for s= 2. One possible

explanation for this behavior is that the initial strength of the master relaxation based on s-clubs
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in S0 is not as strong when s = 3 compared to when s = 2. In other words, the edge star based

constraints (22) when s= 3 are possibly not as strong as star based constraints (21) when s= 2.

The relative weakness of the master relaxation based on edge star constraints may be due to large

3-clubs in the graph that do not resemble edge stars, while it is more common for large 2-clubs to

resemble stars.

As solving the separation problem for both values of s requires a significant proportion of the

overall solution time, we have evaluated the effect of using heuristics to solve the separation prob-

lem. Our results show that this approach might improve the performance of Method 3 depending

on the test bed; see Appendix B.3 for more details.

We close this section by noting that similar to the s= 2 case, the optimal value of θ shows that

our model decreases the size of the maximum 3-club significantly except for those cases where

ω̄3(G) is small. As before, the interdiction problem becomes more difficult to solve when the value

of α is decreased.

Table 6 Results for Group-1 instances with s= 3 and α= 2 using Method 3.

Graph G x(V ) θ #BC nodes #CB #Cuts Total time (s) s-club time (s) LCDS time (s) Gap (%)

karate 5 6 1 8 4 0.32 0.00 0.02 0.00
dolphins 3 19 11,011 95 93 4.49 1.86 0.55 0.00
lesmis 8 11 72 28 20 0.79 0.02 0.18 0.00
polbooks 10 25 50,926 192 187 20.54 7.18 1.94 0.00
adjnoun 10 25 497,453 774 767 429.93 208.39 13.00 0.00
football 2 50 11,670 120 116 232.65 220.00 5.16 0.00
jazz 5 145 45,760 3,633 3,629 TL 549.44 2646.06 40.17
celegansn 28 68 24,388 1,822 1,814 TL 2375.78 1164.87 37.85
celegansm 22 29 5,982 30 28 52.81 2.10 8.98 0.00
email 140 94 1 26 24 TL 3752.68 79.68 81.84
polblogs 340 228 1 20 19 TL 733.57 3180.50 81.93
netscience 6 27 155 8 6 2.78 0.12 0.04 0.00
add20 61 125 3,816 338 330 TL 77.85 787.69 53.32
data 0 32 1 8 6 45.97 43.34 0.04 0.00
uk 0 8 1 5 3 21.87 21.56 0.01 0.00
power 1 27 1 7 5 5.57 4.50 0.02 0.00
add32 5 75 729,074 65 63 TL 15.86 1.03 1.00
hep-th 0 120 1 83 82 TL 3573.15 4.91 44.66
whitaker3 0 15 1 6 4 177.24 175.41 0.01 0.00
crack 0 17 1 6 5 204.25 201.43 0.02 0.00
PGP 4 266 1 104 103 TL 2955.97 40.22 56.79
cs4 0 12 1 6 4 653.00 648.15 0.02 0.00

6.3. Results for Group-2 Instances

We evaluate the performance of Method 3 on Group-2 instances in this section. Tables 9, 10, and 11

show the results for s= 2. As mentioned before, graph Douban is not included in these experiments

because the maximum 2-club for this instance is not found within the time limit. The results on

the remaining 17 instances show that all of them are solved to optimality within the one hour time
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Table 7 Results for Group-1 instances with s= 3 and α= 1 using Method 3.

Graph G x(V ) θ #BC nodes #CB #Cuts Total time (s) s-club time (s) LCDS time (s) Gap (%)

karate 6 5 17 7 3 0.19 0.00 0.02 0.00
dolphins 9 11 11,187 188 184 8.01 3.93 0.82 0.00
lesmis 8 11 84 9 6 0.41 0.00 0.07 0.00
polbooks 20 12 16,007 74 69 12.21 1.80 0.58 0.00
adjnoun 17 15 237,311 269 263 168.81 59.20 2.26 0.00
football 5 45 82,949 2,496 2,491 TL 3241.66 72.25 46.32
jazz 72 28 63,683 6,165 6,159 TL 1003.51 1751.19 33.32
celegansn 40 43 21,710 2,052 2,044 TL 3009.87 513.28 32.90
celegansm 29 19 21,846 34 30 78.16 1.31 8.82 0.00
email 167 70 1 46 45 TL 3639.63 93.73 74.15
polblogs 350 188 1 24 22 TL 850.14 3217.57 76.88
netscience 6 27 1,887 8 6 6.67 0.12 0.04 0.00
add20 102 47 194,989 4,242 4,235 TL 612.74 1549.38 35.94
data 1 31 32,189 28 25 390.48 182.72 0.19 0.00
uk 0 8 1 7 6 33.21 32.74 0.02 0.00
power 3 25 2,774 18 16 26.67 13.04 0.07 0.00
add32 16 55 935,727 92 89 TL 19.22 1.13 7.99
hep-th 6 114 1 93 91 TL 3457.43 4.33 53.44
whitaker3 0 15 1 7 6 212.12 209.15 0.02 0.00
crack 0 17 1 7 6 269.91 265.80 0.02 0.00
PGP 7 252 1 86 84 TL 2425.85 29.35 63.97
cs4 1 10 1 7 6 749.78 742.57 0.02 0.00

Table 8 Results for Group-1 instances with s= 3 and α= 0.5 using Method 3.

Graph G x(V ) θ #BC nodes #CB #Cuts Total time (s) s-club time (s) LCDS time (s) Gap (%)

karate 7 4 78 2 0 0.24 0.00 0.00 0.00
dolphins 18 5 10,654 52 39 3.79 0.45 0.16 0.00
lesmis 13 7 85 4 0 0.59 0.00 0.00 0.00
polbooks 27 8 42,088 44 34 24.74 0.83 0.20 0.00
adjnoun 22 10 148,295 86 75 117.51 9.64 0.45 0.00
football 40 19 249,850 6,843 6,839 TL 2548.35 81.29 36.66
jazz 90 14 546,993 1,606 1,596 TL 230.80 16.60 19.85
celegansn 58 27 174,674 2,364 2,356 TL 2374.93 70.85 27.40
celegansm 35 14 279,199 60 55 717.01 4.37 0.81 0.00
email 251 50 1 56 54 TL 3671.76 143.89 71.90
polblogs 454 62 1 45 43 TL 1357.63 2118.54 68.46
netscience 12 21 7,867 8 6 30.69 0.12 0.04 0.00
add20 116 33 625,508 615 610 TL 45.23 108.92 24.90
data 1 31 471,772 37 33 TL 258.05 0.24 3.55
uk 0 8 1 9 8 51.10 50.15 0.03 0.00
power 7 22 20,025 23 20 114.11 16.14 0.08 0.00
add32 38 39 442,630 112 108 TL 18.63 0.98 14.14
hep-th 11 110 1 99 98 TL 3107.94 1.95 59.10
whitaker3 0 15 1 9 8 294.46 284.14 0.02 0.00
crack 0 17 1 10 9 405.37 394.57 0.03 0.00
PGP 10,680 0 1 89 88 TL 1783.37 41.73 98.68
cs4 1 10 1 9 8 1005.55 994.03 0.03 0.00

limit except instance Anybeat with α= 0.5, which has a 1% relative optimality gap at termination.

We also find that the value of ω̄2(G) remains the same for three instances G05,G08,G09 with α= 2,

but in all other cases the 2-club number significantly decreases after interdiction. For example, the
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cardinality of the maximum 2-club of AS02 is 2,344, while after interdiction it decreases to 114,

80, and 58, respectively, for α equal to 2,1, and 0.5.

Table 9 Results for Group-2 instances with s= 2 and α= 2 using Method 3.

Graph G x(V ) θ #BC nodes #CB Star Leaf Regular Total time (s) s-club time (s) Gap (%)

G04 2 67 1 3 1 0 0 49.19 47.22 0.00
G05 0 89 1 2 1 0 0 15.79 13.77 0.00
G06 1 74 1 3 1 0 0 16.75 15.68 0.00
G08 0 98 25 2 1 0 0 21.81 19.38 0.00
G09 0 103 26 2 1 0 0 23.65 19.99 0.00
B-Alpha 23 99 134 3 1 0 0 21.87 17.16 0.00
B-OTC 35 103 89 3 1 0 0 33.70 27.3 0.00
AS01 42 73 159 3 1 0 0 68.76 45.63 0.00
AS02 40 114 209 3 1 0 0 69.64 47.07 0.00
Ning 30 130 551 3 1 0 0 123.45 113.60 0.00
Hamsterster 19 89 65 3 0 0 1 23.07 20.65 0.00
Escorts 21 120 167 3 1 0 0 104.85 100.16 0.00
Anybeat 54 136 2,602 4 2 0 0 399.65 283.61 0.00
Advogato 40 131 300 3 1 0 0 1219.16 1204.89 0.00
Gplus 100 40 279 4 1 0 0 24.31 16.39 0.00
Facebook1 116 1 1 3 1 0 0 55.15 51.04 0.00
Facebook2 10 1 1 4 2 0 0 0.30 0.23 0.00

Table 10 Results for Group-2 instances with s= 2 and α= 1 using Method 3.

Graph G x(V ) θ #BC nodes #CB Star Leaf Regular Total time (s) s-club time (s) Gap (%)

G04 2 67 134 3 1 0 0 50.07 46.66 0.00
G05 8 79 250 4 2 0 0 40.00 35.24 0.00
G06 5 69 60 3 1 0 0 25.07 19.60 0.00
G08 2 94 640 6 4 0 0 104.19 90.72 0.00
G09 20 78 1,431 3 1 0 0 49.13 30.18 0.00
B-Alpha 50 60 294 3 1 0 0 17.18 9.84 0.00
B-OTC 54 76 3,633 4 1 0 0 67.38 38.39 0.00
AS01 54 60 922 3 2 0 0 73.27 44.99 0.00
AS02 62 80 1,642 3 2 0 0 104.54 47.17 0.00
Ning 45 106 3,140 5 1 0 0 360.93 335.74 0.00
Hamsterster 25 82 614 4 0 0 1 43.33 40.20 0.00
Escorts 37 91 486 3 1 0 0 106.75 100.68 0.00
Anybeat 83 99 19,374 4 2 0 0 507.91 224.23 0.00
Advogato 62 106 5,868 6 2 0 0 2121.36 2027.90 0.00
Gplus 124 5 1 5 1 0 0 23.25 17.95 0.00
Facebook1 116 1 1 3 1 0 0 48.98 45.28 0.00
Facebook2 10 1 1 4 2 0 0 0.28 0.22 0.00

Although during initialization of the master relaxation we add star based constraints only for

the top 20% of vertices by degree, as described in Section 5.1, the number of violated constraints

that are added on-the-fly is never more than 4 (G08 when α= 0.5). As it can be seen under the

columns Star and Leaf in the tables, in the vast majority of instances the largest 2-club found in
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Table 11 Results for Group-2 instances with s= 2 and α= 0.5 using Method 3.

Graph G x(V ) θ #BC nodes #CB Star Leaf Regular Total time (s) s-club time (s) Gap (%)

G04 26 47 479 4 1 0 0 158.12 150.56 0.00
G05 63 31 1,909 4 1 0 0 127.67 115.26 0.00
G06 69 31 2,577 3 1 0 0 80.47 53.41 0.00
G08 75 26 476 3 1 0 0 41.43 37.97 0.00
G09 72 30 3,052 3 1 0 0 54.92 46.99 0.00
B-Alpha 81 41 36,709 6 2 0 0 160.82 20.72 0.00
B-OTC 82 54 37,748 4 1 0 0 239.13 21.59 0.00
AS01 73 44 4,687 3 1 0 0 94.28 47.02 0.00
AS02 96 58 31,063 8 2 0 2 674.79 171.61 0.00
Ning 93 75 99,359 4 1 0 0 908.55 171.84 0.00
Hamsterster 60 51 53,082 8 1 0 3 213.56 75.75 0.00
Escorts 79 65 18,715 3 1 0 0 212.38 80.37 0.00
Anybeat 118 71 321,054 6 3 0 0 TL 224.25 1.00
Advogato 102 80 154,273 9 3 0 0 2622.67 1971.76 0.00
Gplus 129 2 1 4 2 0 0 19.54 16.87 0.00
Facebook1 116 1 1 5 2 0 0 86.24 80.73 0.00
Facebook2 10 1 1 4 2 0 0 0.29 0.22 0.00

the interdicted graph is frequently a star and our heuristic never added a constraint using just the

leaves detected in H.

Similar to Group-1 instances, the interdiction problem becomes more difficult to solve for smaller

values of α, and the number of BC nodes explored and the running time increase noticeably. As

an example, the number of explored nodes for instance Anybeat increases from 136 when α= 2 to

321,054 when α= 0.5. Moreover, the average running time for the 16 instances that are solved to

optimality, increases from 116 seconds to 356 seconds as α decreases from 2 to 0.5.

For s= 3, as mentioned before, solving the maximum s-club problem to optimality is too time-

consuming for instances in Group-2 (See Table 2). Therefore, we use an inexact approach to solve

the separation problem to find a sufficiently violated constraint (i.e., corresponding s-club) instead

of finding a maximum s-club. Given an integral feasible solution (θ̂, x̂) to the master relaxation,

instead of finding a maximum s-club in the graph interdicted according to x̂, we look for an s-club

with cardinality at least θ̂+ ε where ε is the minimum violation we seek in the constraint.

In this inexact separation approach, first we rely on the greedy heuristic built into the ICUT

solver to detect a sufficiently large s-club. If this heuristic s-club size is at least θ̂+ε, the separation

call is terminated early and the corresponding violated constraint is added to the master problem.

If the heuristic s-club is not sufficiently large, the exact Gurobi BC algorithm in the ICUT solver is

run with a termination condition based on a target objective value. In this setting, the solver stops

once it finds an s-club of size at least θ̂+ ε. If neither of the above two conditions results in early

termination of ICUT, we let it continue to solve the separation problem to optimality. In this case,

it will terminate either returning a maximum s-club with violation, i.e., of size greater than θ̂ and

smaller than θ̂+ ε; or certifying that no violated constraint exists. Note that by design, on our test
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bed ICUT subproblems do not reach their termination by time limit. After experimentation with

ε= 1.5,2.5, and 5 in this inexact separation approach (see Appendix B.3), we chose to employ a

minimum constraint violation target of 1.5 for early termination of a separation call.

Moreover, instead of solving the minimum latency-s CDS problem to optimality, we use the

following method that is analogous to Algorithm 2 to heuristically find a hereditary subset of the

violated 3-club: if a 3-club S contains an edge {u, v} such that degG[S](u) + degG[S](v)− |cuv|= |S|

where |cuv| is the number of common neighbors of vertices u and v, then {u, v} ⊆ S is a minimum

latency-3 CDS of G[S] and S is a H-hereditary 3-club for H = S \ {u, v}. Otherwise, we set

H = {u ∈ S | degG[S](u) = 1}. Table 12 shows the results of these experiments for α= 2. As it can

be seen, only 3 instances Gplus, Facebook1, and Facebook2 are solved to optimality within the

time limit. We should remind the reader here that all separation calls terminated conclusively even

though the cumulative separation time exceeds one hour in these instances. Since our previous

experiments show that the interdiction problem becomes more difficult to solve on this test bed as

the value of α decreases, we have not conducted experiments for α= 1 and α= 0.5.

Table 12 Results for Group-2 instances with s= 3 using inexact separation.

Graph G x(V ) θ #BC nodes #CB #Cuts Total time (s) s-club time (s) LCDS time (s) Gap (%)

G04 10,876 0 1 5 4 TL 4,967.81 0.00 99.62
G05 8,846 0 1 9 8 TL 4,671.76 0.00 99.48
G06 8,717 0 1 87 86 TL 6,325.01 0.03 99.44
G08 5,672 9 1 135 133 TL 3,493.11 0.17 98.97
G09 8,114 0 1 57 56 TL 4,449.13 0.06 99.33
B-Alpha 3,783 0 1 117 116 TL 78.47 0.31 98.02
B-OTC 5,295 8 1 90 88 TL 148.10 0.24 98.32
AS01 62 82 1,050 125 122 TL 195.56 0.06 15.74
AS02 10,900 0 1 74 73 TL 178.72 0.52 99.11
Ning 10,298 0 1 47 46 TL 442.33 0.98 99.00
Hamsterster 1,674 7 18,099 3,386 3,384 TL 2,777.36 9.15 95.26
Escorts 10,106 0 1 5 3 TL 4,002.30 0.00 99.20
Anybeat 12,645 0 1 25 24 TL 190.87 0.73 99.10
Advogato 6,551 0 1 46 45 TL 559.49 1.16 98.33
Gplus 100 41 380 8 5 2405.92 53.99 0.07 0.00
Facebook1 116 1 1 5 3 318.07 170.60 0.07 0.00
Facebook2 10 1 1 6 4 2.50 0.63 0.00 0.00
Douban 154,908 0 1 4 3 TL 4,261.36 0.03 99.92

The results for the Group-2 instances reinforce the conclusions from our experiments with Group-

1, that for s= 3 the interdiction problem becomes much more challenging to solve.

7. Conclusions

In this paper we proposed an interdiction model to minimize the maximum cardinality of an s-

club in the given graph. Motivated by account suspension practices in online social networks, we

assume a penalty in the objective function for each vertex interdicted rather than assuming a hard
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budget constraint. By introducing the concept of H-hereditary s-clubs we derived a better MILP

formulation with fewer constraints (when compared to an MILP formulation derived from standard

interdiction techniques) and derive results about the polyhedral structure of its LP relaxation and

of the convex hull of its feasible solutions. We show that the hereditary subset H inside an H-

hereditary s-club can be found equivalently as a latency-s CDS of the s-club. Using these results

we design a delayed constraint generation branch-and-cut algorithm for the interdiction problem

that identifies violated constraints by solving a maximum s-club problem and a minimum latency-s

CDS problem during separation. Our computational studies show that our algorithm can solve the

s-club interdiction problem over well-known benchmark instances with more than 10,000 vertices

in a few minutes and that it significantly outperforms a similar algorithm that is based only on the

naive MILP formulation of the interdiction problem, especially when s= 2. The 3-club interdiction

problem is still quite challenging to solve on the second group of instances in our test-bed on which

solving the NP-hard maximum 3-club problem remains difficult.

Given the importance of conclusive termination during separation calls to the correctness of

such a relaxation based decomposition branch-and-cut scheme, further breakthroughs are needed

to solve the maximum s-club and minimum latency-s CDS problems on this test bed for s ≥ 3.

The master relaxation also needs further investigation and strengthening, especially for s≥ 3, to

shift the computational burden away from the separation procedures to the extent possible. These

developments and improved inexact separation procedures for s≥ 3 can further extend our ability

to solve the s-club interdiction on even larger scale social networks.
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Appendix A: Proofs of Technical Results

A.1. Proof of Lemma 1

Consider an arbitrary U ∈ C(S,H) and suppose U = S \ T for some T ⊆ H. Clearly, S \H ⊆ U . Suppose

x(S \H)≥ 1. Then, we also have x(U)≥ 1. By definition of the set Λ(S,H) we know that θ≥ 0, and hence

(θ,x) satisfies (7).

Now suppose x(S \H) = 0. Then by definition (5), the point (θ,x) satisfies:

θ≥ |S| −x(H) = |U |+ |T | −x(H ∩T )−x(H ∩U),

because U and T partition S which contains H. As |T | − x(H ∩ T ) ≥ 0, it follows that (θ,x) satisfies θ ≥

|U | −x(H ∩U). Again, as S \H and H partition S which contains U , we know that

x(U) = x((S \H)∩U) +x(H ∩U) = x(H ∩U),

because x(S \H) = 0. Hence, the point (θ,x) satisfies θ≥ |U | −x(U)≥ |U | − |U |x(U) as claimed. �

A.2. Proof of Lemma 2

Let (θ,x) ∈Λ(S,H). If x(S \ J)≥ 1, we have |S| − x(J)− |S|x(S \ J)≤ 0 and θ ≥ 0. Hence, (θ,x) ∈Λ(S,J).

Now suppose x(S \ J) = 0. Then, it follows that x(S \H) = 0 and x(H \ J) = 0 as J ⊂H ⊆ S. Hence, (θ,x)

satisfies θ≥ |S|−x(H)≥ 0. Because x(H \J) = 0, it also implies that θ≥ |S|−x(J)≥ 0 and (θ,x)∈Λ(S,J),

as desired. �

A.3. Proof of Proposition 1

We prove that any feasible solution of (14) is feasible to (3) and vice versa. First notice that Lemmas 1,

2, and 3 imply that any feasible solution of (14) is feasible to (3). Now, suppose (θ,x) is feasible to (3),

which implies that θ ≥ ω̄s(G \ T x)≥ |S′| − |S′|x(S′) for all S′ ∈ S. Consider S ∈ C∗ and H ∈H∗(S), chosen

arbitrarily, and define r(S,H,x) = |S|−x(H)−|S|x(S \H). Observe that the claim is proven if we can show

that θ≥ r(S,H,x). We consider the following three cases:

(i) S ⊆ V \T x: No vertex of S is interdicted in this case and hence, x(H) = x(S\H) = 0 and r(S,H,x) = |S|.

Because S ∈ S, we have that θ≥ ω̄s(G \T x)≥ |S| and the claim holds.

(ii) (S \H)∩T x 6= ∅: At least one of the vertices interdicted by x belongs to S \H. In this case, x(S \H)≥ 1,

which implies that r(S,H,x)≤ 0, and the claim holds.

(iii) (S \H)∩T x = ∅ and H ∩T x 6= ∅: Because any vertex in S interdicted by x belongs to H, we know that

S \ T x is an s-club in G \ T x, and it follows that θ ≥ ω̄2(G \ T x)≥ |S \ T x|. In this case, r(S,H,x) =

|S|− |H ∩T x|= |S \ (H ∩T x)|. As (S \H)∩T x = ∅, we have S∩T x =H ∩T x and S \ (H ∩T x) = S \T x.

Therefore, r(S,H,x) = |S \T x| and the claim holds.

Thus, we can conclude that any feasible solution of (3) is feasible to (14). �
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A.4. Proof of Proposition 2

Suppose that an s-club U is not critical. Then, there exists another s-club S and a non-empty H ∈H∗(S),

such that U ∈ C(S,H). In particular, U = S \T for some non-empty T ⊆H and U is also an s-club because S

is an H-hereditary s-club. Now, for a vertex v ∈ T and consider U ′ =U ∪{v}, distinct from U by construction.

Note that U ′ = (S \ T ) ∪ {v} = S \ (T \ {v}) is also an s-club because T \ {v} ⊆H and S is H-hereditary.

Then, it follows that U is not one-step maximal.

Conversely, if U is an s-club that is not one-step maximal, then there exists some vertex v ∈ V \U such that

U ∪ {v} is an s-club. Then, U ∪ {v} is a {v}-hereditary s-club. Hence, U ∈ C(U ∪ {v},{v}) and is therefore

not critical. �

A.5. Results Needed to Prove Proposition 3

The LP relaxation P of Formulation (14) is full dimensional because (θ = |V |, xv = 1/|V | : v ∈ V ) ∈

interior(P ). Consider an S ∈ C∗ and H ∈H∗(S) that define the face F (S,H) of the polyhedron P given by

the corresponding (S,H)-constraint (14b), that is,

F (S,H) := {(θ,x)∈ P | θ= r(S,H,x)} . (24)

where we recall that r(S,H,x) = |S| −x(H)− |S|x(S \H).

Lemma 4. The face F (S,H) in equation (24) is not contained within any of the following faces of P :

{(θ,x)∈ P | θ= 0} and {(θ,x)∈ P | xv = i} for each v ∈ V and i∈ {0,1}.

Proof. Define θ′ = |S| − |H|, x′v = 0 if v ∈ S \H and x′v = 1 if v ∈ (V \ S) ∪H. Note that (θ′, x′) must

belong to P . For any S′ ∈ C∗ and H ′ ∈ H∗(S′), if x′(S′ \H ′) ≥ 1, then r(S′,H ′, x′) ≤ 0 ≤ θ′. On the other

hand if x′(S′ \H ′) = 0, then S′ \H ′ ⊆ S \H, and θ′ = |S|− |H| ≥ |S′|− |H ′|= r(S′,H ′, x′). As r(S,H,x′) = θ′,

we know that (θ′, x′) ∈ F (S,H). Moreover, point (θ′, x′) is not in the (xv = 1)-face of v ∈ S \H and not in

the (xv = 0)-face of v ∈ (V \S)∪H.

Now consider another point defined as θ̃ = |S|, x̃v = 0 if v ∈ S and x̃v = 1 if v ∈ V \ S. Note that (θ̃, x̃) ∈

F (S,H) based on similar arguments. The point (θ̃, x̃) is not contained in the (xv = 1)-face of v ∈ S, not

contained in the (xv = 0)-face of v ∈ V \ S, and not contained in the (θ = 0)-face as |S| ≥ 1. Next we show

that F (S,H) can neither belong to the (xv = 0)-face for v ∈ S \H nor to the (xv = 1)-face for v ∈ V \ S to

complete the proof.

For any U ∈ C∗, J ∈H∗(U), and x ∈ [0,1]|V |, we know that r(U,J, x̃)≤ |S|= θ̃ for any U ∈ C∗, J ∈H∗(U)

as (θ̃, x̃)∈ P . If in addition U 6= S, we claim that r(U,J, x̃)≤ |S| − 1. Indeed, if U ⊂ S or U ∩S = ∅ then the

claim follows from the definition of x̃. Thus, suppose that U ∩S 6= ∅ and U \S 6= ∅.

If U ∩S ⊂ S, i.e., S \U is non-empty, then

r(U,J, x̃) = |U | − |J \S| − |U | × |(U \ J) \S| ≤ |U | − |J \S| − |(U \ J) \S|= |U ∩S| ≤ |S| − 1.

Now suppose S ⊂ U . We also know that U \ J 6= ∅, as otherwise U is a clique that contains S, which

contradicts S ∈ C∗. If in addition, (U \ J) ∩ (V \ S) = ∅, it follows that U \ J ⊆ S. Consider the following

relationships: U \ J ⊆ S ⊂ U , which implies that U \ S ⊆ J . Hence, S can be obtained from U by deleting
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U \S ∈H(U), a contradiction to S ∈ C∗. Therefore, if S ⊂ U it must be the case that (U \ J)∩ (V \S) 6= ∅.

If so, we obtain r(U,J, x̃)≤ 0≤ |S| − 1, as desired. So the claim holds.

We are now ready to demonstrate a point (θ̂, x̂) ∈ F (S,H) that is not contained in the (xv = 0)-face

for an arbitrarily chosen v ∈ S \ H. Define x̂u = x̃u ∀u 6= v and with x̂v = 1/|S|; let θ̂ = |S| − 1. Then,

r(S,H, x̂) = |S| − 1 and therefore (θ̂, x̂) satisfies the equality constraint in F (S,H). On the other hand, as

x̂ > x̃ we obtain r(U,J, x̂)≤ r(U,J, x̃) for any U ∈ C∗ and J ∈H∗(U). Therefore, as r(U,J, x̃)≤ |S| − 1 = θ̂,

we conclude that θ̂≥ r(U,J, x̂) for any U ∈ C∗ and J ∈H∗(U). In other words, (θ̂, x̂) belongs to F (S,H) but

it does not belong into the face of P induced by xv = 0.

Now we demonstrate a point (θ̄, x̄) ∈ F (S,H) that is not contained in the (xv = 1)-face for an arbitrarily

chosen v ∈ V \ S. Consider the same x̃ as in the previous case and define x̄u = x̃u for each u 6= v and set

x̄v = 1− ε, where the positive constant ε < 1/|V |, and let θ̄ = θ̃ = |S|. Observe that r(S,H, x̄) = r(S,H, x̃)

and therefore (θ̄, x̄) satisfies the constraint defining F (S,H) at equality. Similarly, r(U,J, x̄) = r(U,J, x̃) for

any s-club U that does not contain vertex v. Hence, if v 6∈ U , (θ̄, x̄) satisfies the corresponding constraint

θ ≥ r(U,J,x). If v ∈ J , then r(U,J, x̄) = r(U,J, x̃) + ε ≤ |S| − 1 + 1/|V | < |S| = θ̄, thus (θ̄, x̄) satisfies the

constraint θ≥ r(U,J,x). Finally, if v ∈U \ J , then r(U,J, x̄) = r(U,J, x̃) + ε|U | ≤ |S| − 1 + 1 = |S|= θ̄. Again

(θ̄, x̄) satisfies the constraint θ≥ r(U,J,x) if v ∈U \J . Hence, (θ̄, x̄)∈ F (S,H), but it does not belong to the

face induced by xv = 1. Hence, F (S,H) is not contained within any of the trivial faces of P . �

A.6. Proof of Proposition 3

Consider Ŝ ∈ C∗ and Ĥ ∈H∗(Ŝ) also chosen arbitrarily such that (S,H) 6= (Ŝ, Ĥ). We claim that there exists

a point (θ̃, x̃)∈ F (S,H) such that (θ̃, x̃) /∈ F (Ŝ, Ĥ); this assertion in conjunction with Lemma 4 would yield

the desired result. This is because, if F (S,H) \ F (Ŝ, Ĥ) 6= ∅, we know that the face F (S,H) cannot be

completely contained in the face F (Ŝ, Ĥ). Since the latter is arbitrary, it shows that no other inequality (14b)

induces a face of P that contains F (S,H). Therefore, F (S,H) must be maximal.

First, we assume that Ŝ = S. It then follows that Ĥ 6=H, which in turn implies that S \H 6= ∅; recall that

if S =H, then S = Ŝ must be a clique, in which case H∗(Ŝ) = {Ŝ} as it only contains maximal members.

Consider the point constructed as follows: θ̃ = |S| − |H|, x̃v = 0 if v ∈ S \H and x̃v = 1 if v ∈ (V \ S)∪H.

Note that (θ̃, x̃) ∈ F (S,H) as the defining inequality is active at (θ̃, x̃) and the point belongs to P (easy to

verify). Now, because H,Ĥ ∈H∗(S), then H is not contained in Ĥ and vice versa. This observation implies

that S \ Ĥ is not contained in S \H, consequently x̃(S \ Ĥ)≥ 1. Therefore, |Ŝ|− x̃(Ĥ)−|Ŝ|x̃(Ŝ \ Ĥ)≤ 0 and

θ̃ > 0, which implies that (θ̃, x̃) 6∈ F (Ŝ, Ĥ).

Now we assume that S 6= Ŝ and consider the following point: θ̃= |S|, x̃v = 0 if v ∈ S and x̃v = 1 if v ∈ V \S.

Note that (θ̃, x̃) ∈ F (S,H). Suppose that Ŝ \ Ĥ is not contained in S. Then, x̃(Ŝ \ Ĥ) ≥ 1 and therefore

|Ŝ| − x̃(Ĥ)− x̃(Ŝ \ Ĥ)≤ 0, which implies that (θ̃, x̃) 6∈ F (Ŝ, Ĥ) as θ̃ = |S| ≥ 1. Next consider the case where

Ŝ \ Ĥ ⊆ S. Because S, Ŝ ∈ C∗, by the definition of C∗ we know that Ŝ \ Ĥ 6= S; hence, the containment must

be strict. Now, partition Ĥ as Ĥ = Ĥ1∪Ĥ2, where Ĥ1 = Ĥ \S and Ĥ2 = Ĥ∩S. From the fact that Ŝ \Ĥ ⊂ S,

it follows that the right-hand side of the constraint inducing face F (Ŝ, Ĥ) evaluated at (θ̃, x̃) becomes:

|Ŝ| − x̃(Ĥ)− x̃(Ŝ \ Ĥ) = |Ŝ| − x̃(Ĥ) = |Ŝ| − |Ĥ1|.
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Now, we claim that |Ŝ| − |Ĥ1| < |S|. Suppose, for the sake of contradiction that this is not the case, i.e,

|Ŝ| − |Ĥ1|= |S|. Then, as Ŝ \ Ĥ1 ⊆ S this would imply that Ŝ \ Ĥ1 = S. However, this would contradict the

definition of C∗ as S ∈ C∗. Therefore, |Ŝ|− |Ĥ1|< |S|= θ̃ implying that (θ̃, x̃) 6∈ F (Ŝ, Ĥ), which completes the

proof. �

A.7. Elementary Properties of Convex Hull P

Lemma 5. Consider a non-empty graph G = (V,E) and positive integer s. The convex hull of feasible

solutions to Formulation (14), denoted by P, is full dimensional.

Proof. Let ev denote the |V |-dimensional unit vector with v-th component at one. It is easy to verify that

the following |V |+ 2 points in P, (θ= |V |, x= ev)∈P for each v ∈ V , (θ= |V |, x= 0), and (θ= 0, x= 1), are

affinely independent. �

Lemma 6. Consider a non-empty graph G = (V,E) and positive integer s. The valid inequality xv ≥ 0

induces a facet of P for each v ∈ V .

Proof. Let the “zero face” corresponding to vertex v be denoted as Fv := {(θ,x) ∈ P | xv = 0}. As

dim(P) = |V |+ 1, we demonstrate the same number of affinely independent points contained in Fv to estab-

lish this claim. The following can be easily verified as affinely independent points: (θ = |V |, x= eu) ∈ P for

each u∈ V \ {v}, (θ= |V |, x= 0), and (θ= 1, x= 1− ev).

�

A.8. Proof of Theorem 1

Consider and s-club S ∈ C∗ and an H ∈H(S). Note that S \H may be empty if S =H is a clique. We know

from Lemma 6 that PS\H :=P ∩{(θ,x) | xv = 0 ∀v ∈ S \H} is a face of P, and hence,

dim(PS\H) = dim(P)− |S \H|.

The inequality θ≥ |S| −x(H) is valid for PS\H because xv = 0 for every v ∈ S \H and S is H-hereditary.

The following collection of dim(PS\H) points can be easily verified to be contained in the face,

FQ := {(θ,x)∈PS\H | θ= |S| −x(H)}.

1. Construct the first |H| points (θ̂, x̂) for every vertex u∈H where θ̂= |S| − 1 and x̂ is defined as

x̂v =


1, if v= u,

1, if v ∈ V \S,

0, if v ∈ S \ {u}.

2. Construct the next |V \S| points (θ̂, x̂) for every vertex u∈ V \S where θ̂= |S| and x̂ is defined as

x̂v =

{
0, if v ∈ S ∪{u}
1, if v ∈ V \ (S ∪{u}).

Note that because S is a critical s-club, S ∪{u} cannot be an s-club based on Proposition 2.

3. Finally consider the point, (θ̂, x̂) where θ̂= |S| and x̂ defined as

x̂v =

{
0, if v ∈ S
1, if v ∈ V \S.

The foregoing dim(PS\H) = |V |+ 1−|S|+ |H| points can be verified to be affinely independent, establishing

our claim. �
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A.9. Proof of Theorem 2

Validity of inequality (18) is easy to see as the clique S is hereditary under vertex deletion and it is an s-club

for every s≥ 2. We prove that the face F ′ of P induced by inequality (18) is maximal. That is,

F ′ := {(θ,x)∈P | θ+x(S) = |S|} .

Consider an arbitrary proper face of P given by:

F := {(θ,x)∈P | a0θ+
∑
i∈V

aixi = b},

which we assume contains F ′ in order to arrive at a contradiction.

Consider the following point: θ = |S|;xu = 1 ∀u /∈ S;xu = 0 ∀u ∈ S. As (θ,x) ∈ F ′ ⊆ F , we obtain the

following equation:

|S|a0 +
∑
i/∈S

ai = b. (25)

Now consider the following point for some ` ∈ S: θ = |S| − 1;xu = 1 ∀u ∈ (V \ S)∪ {`};xu = 0 ∀u ∈ S \ {`}.

As (θ,x)∈ F ′ ⊆ F , we obtain the following equation:

(|S| − 1)a0 +
∑
i/∈S

ai + a` = b. (26)

From equations (25) and (26), we can conclude that a` = a0 ∀`∈ S and rewrite F as follows:

F = {(θ,x)∈P | a0θ+ a0x(S) +
∑
i/∈S

aixi = b}. (27)

Finally, consider the following point for an arbitrary vertex ` /∈ S: θ = |S \ NG(`)|; xu = 1 ∀u ∈ NG(`) ∪

[V \ (S ∪ {`})]; xu = 0 ∀u ∈ {`} ∪ S \NG(`). Because S is a maximal clique, vertex ` cannot be adjacent to

every vertex in S. Hence, we know that S \NG(`) is a non-empty clique. We also know that {`}∪S \NG(`)

is not an s-club as vertex ` is isolated in the graph interdicted according to x. As ` /∈ S, we know that

x(S) = |S ∩NG(`)|, and hence θ + x(S) = |S|, implying that (θ,x) ∈ F ′. Now, using equation (27) we can

obtain the following equation as F ′ ⊆ F :

a0|S \NG(`)|+ a0|S ∩NG(`)|+
∑

i/∈S∪{`}

ai = b. (28)

From equations (25) and (28), we can conclude that a` = 0 for each ` /∈ S and b= |S|a0. We now know that

F has the following form:

F = {(θ,x)∈P | a0θ+ a0x(S) = |S|a0}.

As F is a proper face, we know that a0 6= 0 and we can conclude that F ′ = F is a maximal proper face. �

A.10. Proof of Theorem 3

Validity of inequality (19) follows from the observation that for any x ∈ {0,1}|V | and θ ∈ R, we know that

(θ,x)∈P if and only if θ≥ ω̄s(G\T x). We know that if xv = 0, ω̄s(G\T x)≥ degG(v) + 1−x(NG(v)) and the

inequality is valid. If xv = 1 and NG(v) is an independent set, the inequality imposes that θ≥ 1−x(NG(v)),

which is valid for all x∈P.
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As before, we show that inequality (19) induces a maximal face of P. We define,

F ′ := {(θ,x)∈P | θ+x(NG(v)) + dvxv = dv + 1} ,

where dv ≡ degG(v). Consider an arbitrary proper face of P given by:

F := {(θ,x)∈P | a0θ+
∑
i∈V

aixi = b},

which we assume contains F ′.

Consider the following point: θ = dv + 1;xu = 1 ∀u /∈ NG[v];xu = 0 ∀u ∈ NG[v]. As (θ,x) ∈ F ′ ⊆ F , we

obtain the following equation:

(dv + 1)a0 +
∑

i/∈NG[v]

ai = b. (29)

Now consider the following point for some `∈NG(v): θ= dv;xu = 1 ∀u /∈NG[v];x` = 1;xu = 0 ∀u∈NG[v]\{`}.

As (θ,x)∈ F ′ ⊆ F , we obtain the following equation:

dva0 +
∑

i/∈NG[v]

ai + a` = b. (30)

From equations (29) and (30), we can conclude that a` = a0 ∀`∈NG(v) and rewrite F as follows:

F = {(θ,x)∈P | a0θ+ a0x(NG(v)) + avxv +
∑

i/∈NG[v]

aixi = b}.

Next we consider an arbitrary ` /∈NG[v]. As NG[v] ∈ C∗ is a one-step maximal (critical) s-club, we know

that NG[v]∪{`} cannot be an s-club; otherwise, we will contradict the definition of C∗ (see Proposition 2).

Hence, we consider the following point: θ = dv + 1;xu = 0 ∀u ∈ NG[v] ∪ {`};xu = 1 ∀u /∈ NG[v] ∪ {`}. As

(θ,x)∈ F ′ ⊆ F , we obtain the following equation:

(dv + 1)a0 +
∑

i/∈NG[v]∪{`}

ai = b. (31)

Now from equations (29) and (31), we can conclude that a` = 0 for each ` /∈NG[v] and b= (dv + 1)a0. We

now know that F has the following form:

F = {(θ,x)∈P | a0θ+ a0x(NG(v)) + avxv = (dv + 1)a0}.

Finally to identify the coefficient av, we consider the following point: θ = 1;xu = 0 ∀u ∈NG(v);xu = 1 ∀u /∈

NG(v). As (θ,x)∈ F ′ ⊆ F , we obtain the following equation:

a0 + av = (dv + 1)a0. (32)

Hence, av = dva0. Because F is a proper face, we know that a0 6= 0 and thus we conclude that F ′ = F is a

maximal proper face. �
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A.11. Proof of Theorem 4

Validity of inequality (20) follows from the observation that for any feasible solution (θ,x) ∈P of Formula-

tion (14), θ ≥ ω̄s(G \ T x). If xu = xv = 0, we know that ω̄s(G \ T x)≥ degG(u) + degG(v)− cuv − x(Luv) and

the inequality is satisfied. If xu = xv = 1, we require θ≥min{1, cuv}−x(Luv) which holds.

If xu = 1 and xv = 0, then θ ≥ degG(v)− x(Luv) which is valid. Finally, if xu = 0 and xv = 1, we require

θ ≥ degG(u)− cuv − x(Luv) + min{1, cuv}. Here, we consider two cases. If cuv = 0, the inequality becomes

θ≥ degG(u)−x(Luv), and if cuv ≥ 1, the inequality becomes θ≥ degG(u)−cuv−x(Luv)+1 and the inequality

is valid in both cases.

Next, we show that the face of P induced by inequality (20) is maximal.

Let F ′ denote the face of P induced by inequality (20). That is,

F ′ := {(θ,x)∈P | θ+x(Luv) + (du− cuv)xu + (dv −min{1, cuv})xv = du + dv − cuv} ,

where du ≡ degG(u). Consider an arbitrary proper face of P given by:

F := {(θ,x)∈P | a0θ+
∑
i∈V

aixi = b},

which we assume contains F ′.

Consider the following point: θ = du + dv − cuv;xi = 1 ∀i /∈ N(u) ∪ N(v);xi = 0 ∀i ∈ N(u) ∪ N(v). As

(θ,x)∈ F ′ ⊆ F , we obtain the following equation:

(du + dv − cuv)a0 +
∑

i/∈N(u)∪N(v)

ai = b. (33)

Now for some `∈Luv, consider the following point: θ= du +dv− cuv−1;xi = 1 ∀i /∈N(u)∪N(v);x` = 1;xi =

0 ∀i∈N(u)∪N(v) \ {l}. As (θ,x)∈ F ′ ⊆ F , we obtain the following equation:

(du + dv − cuv − 1)a0 +
∑

i/∈N(u)∪N(v)

ai + a` = b. (34)

From equations (33) and (34), we can conclude that a` = a0 ∀`∈Luv and rewrite F as follows:

F = {(θ,x)∈P | a0θ+ a0x(Luv) + auxu + avxv +
∑

i/∈N(u)∪N(v)

aixi = b}.

Next we consider an arbitrary ` /∈N(u) ∪N(v). As N(u) ∪N(v) ∈ C∗, we know that N(u) ∪N(v) ∪ {`}

cannot be an s-club; otherwise, we will contradict the definition of C∗ (see Proposition 2). Hence, we consider

the following point: θ = du + dv − cuv;xi = 0 ∀i ∈ N(u) ∪ N(v) ∪ {`};xi = 1 ∀i /∈ N(u) ∪ N(v) ∪ {`}. As

(θ,x)∈ F ′ ⊆ F , we obtain the following equation:

(du + dv − cuv)a0 +
∑

i/∈{N(u)∪N(v)}∪{`}

ai = b. (35)

Now from equations (33) and (35), we can conclude that a` = 0 for each ` /∈N(u)∪N(v) and b= (du + dv −

cuv)a0. We now know that F has the following form:

F = {(θ,x)∈P | a0θ+ a0x(Luv) + auxu + avxv = (du + dv − cuv)a0}.

To identify the coefficients au and av, we consider the following two cases.



8 Daemi, Borrero, and Balasundaram: Interdicting Low-Diameter Cohesive Subgroups

(i) Suppose cuv = 0.

Consider the point θ = dv;xi = 0 ∀i ∈N(u)∪N(v) \ {u};xi = 1 ∀i /∈ Luv;xu = 1 As (θ,x) ∈ F ′ ⊆ F , we

obtain the following equation:

dva0 + au = (du + dv)a0. (36)

Hence, au = dua0.

Now, consider the following point to determine coefficient av: θ= du;xi = 0 ∀i∈N(u)∪N(v)\{v};xi =

1 ∀i /∈Luv;xv = 1. As (θ,x)∈ F ′ ⊆ F , we obtain the following equation:

dua0 + av = (du + dv)a0. (37)

Hence, av = dva0.

(ii) Suppose cuv ≥ 1.

Consider the point: θ= dv;xi = 0 ∀i∈N(u)∪N(v) \ {u};xi = 1 ∀i /∈Luv;xu = 1. As (θ,x)∈ F ′ ⊆ F , we

obtain the following equation:

dva0 + au = (du + dv − cuv)a0. (38)

Hence, au = (du− cuv)a0.

Finally, consider the following point to determine coefficient av: θ = 1;xi = 0 ∀i ∈ Luv;xi = 1 ∀i /∈

Luv;xu = xv = 1. As (θ,x)∈ F ′ ⊆ F , we obtain the following equation:

a0 + (du− cuv)a0 + av = (du + dv − cuv)a0. (39)

Hence, av = (dv − 1)a0.

Combining the two cases together we obtain au = (du − cuv)a0 and av = (dv −min{1, cuv})a0. Because F is

a proper face, we know that a0 6= 0 and thus we conclude that F ′ = F is a maximal proper face. �

A.12. Proof of Proposition 4

( =⇒ ) The claim is trivial if H is empty; suppose not. Because S and S \H are s-clubs, it follows that G[S]

and G[S \H] are both connected. Hence, S \H dominates G[S]. It suffices to show that between distinct,

non-adjacent vertices u and v in S, there exists a path of length at most s whose internal vertices belong to

S \H. The claim is trivially true if u and v belong to S \H.

Suppose u and v belong to H. Define T :=H \ {u, v}. Because S is an H-hereditary s-club, we know that

S \T is an s-club that contains u and v. Hence, there exists a path of length at most s between u and v in

G[S \T ] and the internal vertices on this path clearly do not intersect H.

Now suppose u∈ S \H and v ∈H. Define T ′ :=H \{v}. As before, S \T ′ is an s-club that contains both u

and v and the internal vertices on some path of length at most s between them in G[S \T ] are all contained

in S \H.

(⇐= ) For an arbitrary T ⊆ S \D, we need to show that S \T is an s-club. Consider distinct, non-adjacent

vertices u and v in S \T . By definition, there exists a u, v-path of length at most s in G[S] with all its internal

vertices contained in D. None of these vertices are deleted when T is deleted and the path is preserved in

G[S \T ]. �



Daemi, Borrero, and Balasundaram: Interdicting Low-Diameter Cohesive Subgroups 9

Appendix B: Supplementary Experimental Results

B.1. Comparison of Root Node Performance of Method 1 and Method 3

We have compared the performance of Method 1 and Method 3 in the root node by setting a termination

condition on the number of explored nodes. All other solver parameters including primal heuristics and

general purpose cutting planes are at their default settings. With this condition, the solver terminates when

the total number of branch-and-cut nodes explored exceeds the value specified in the Gurobi NodeLimit

parameter (which is 1 in our case). Tables 13 and 14 show the results of these experiments. Comparing the

quality of the objective values and gaps obtained by each method in the root node shows that except for

graph football for s = 2, Method 3 gives the same or a smaller gap and a smaller objective value than

Method 1 at the root node. These results (along with the results presented in Appendix B.2) suggest that

the improvements observed in Method 3 are predominantly because the heredity-based formulation is better

than the standard formulation.
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Table 13 Root node comparison of Method 1 and Method 3 on Group-1 instances for s= 2 and α= 0.5.

Graph G Method #CB #Cuts Total time (s) s-club time (s) Obj Val Gap (%)

karate
3 17 14 0.14 0.02 7.00 8.52
1 84 82 0.26 0.12 16.50 92.42

dolphins
3 12 11 0.39 0.20 11.50 20.66
1 45 44 1.78 1.66 12.00 83.33

lesmis
3 18 16 0.32 0.02 13.00 13.89
1 47 43 0.15 0.07 21.50 93.02

polbooks
3 19 15 0.41 0.11 18.00 18.80
1 51 49 1.20 1.11 24.50 91.84

adjnoun
3 12 9 0.90 0.59 16.00 20.11
1 81 77 2.52 2.27 28.50 93.97

football
3 42 38 11.36 11.14 16.00 20.54
1 34 29 10.12 10.03 15.50 77.88

celegansn
3 9 5 4.59 4.36 32.50 21.77
1 40 39 4.82 4.07 135.00 98.12

celegansm
3 7 3 0.44 0.08 26.00 9.79
1 36 35 0.66 0.51 238.00 98.74

email
3 5 1 24.35 23.65 44.50 9.76
1 29 27 153.49 152.52 66.50 86.29

netscience
3 3 1 1.16 0.04 22.50 5.63
1 73 71 2.14 1.27 29.50 49.37

add20
3 7 1 2.60 0.77 62.50 20.01
1 98 97 93.01 18.97 124.00 86.88

data
3 3 1 12.59 12.19 17.50 4.62
1 3 1 13.76 13.45 17.50 9.36

uk
3 8 7 27.04 26.85 5.00 0.00
1 7 6 23.97 23.77 5.00 0.00

power
3 3 1 2.05 1.61 16.00 0.00
1 36 34 27.39 26.16 16.00 5.52

add32
3 4 1 3.21 1.15 31.00 3.95
1 54 53 23.96 13.78 32.00 33.55

hep-th
3 4 2 10.55 6.40 38.00 7.63
1 163 162 465.74 267.26 51.00 48.35

whitaker3
3 2 1 44.94 44.68 9.00 0.00
1 2 1 48.05 47.72 9.00 0.00

crack
3 3 1 69.49 69.19 9.50 0.00
1 3 1 88.99 88.58 9.50 0.00

PGP
3 3 1 28.05 8.29 69.50 9.68
1 138 137 933.31 636.85 206.00 84.89

cs4
3 7 6 716.82 713.64 6.00 0.00
1 8 7 666.96 663.10 6.00 0.00
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Table 14 Root node comparison of Method 1 and Method 3 on Group-1 instances for s= 3 and α= 0.5.

Graph G Method #CB #Cuts Total time(s) s-club time(s) LCDS time(s) Obj Val Gap (%)

karate
3 2 0 0.24 0.00 0.00 7.50 5.89
1 62 59 0.16 0.05 15.00 82.14

dolphins
3 33 30 1.07 0.41 0.24 17.50 34.99
1 66 66 0.84 0.63 20.50 70.95

lesmis
3 4 0 0.6 0.00 0.00 13.50 7.81
1 81 80 0.32 0.10 25.50 79.88

polbooks
3 35 31 2.88 0.79 0.32 22.50 22.63
1 42 41 0.50 0.22 29.00 78.45

adjnoun
3 53 49 8.7 6.80 0.59 27.50 39.84
1 51 49 4.01 3.31 31.00 76.20

celegansm
3 55 50 16.77 4.18 0.87 31.50 13.63
1 32 31 8.80 4.23 184.50 94.69

netscience
3 8 6 13.22 0.11 0.05 27.00 8.49
1 113 111 7.56 1.86 40.00 56.01

uk
3 9 8 46.01 44.95 0.04 8.00 0.00
1 13 11 51.20 50.12 8.00 0.00

power
3 23 20 27.96 14.72 0.11 25.50 5.22
1 211 210 193.99 164.46 51.50 58.11

whitaker3
3 9 8 274.45 264.57 0.04 15.00 0.00
1 14 12 348.51 339.10 15.00 0.00

crack
3 10 9 383.09 372.56 0.04 17.00 0.00
1 18 16 606.28 595.34 17.00 0.00

cs4
3 9 8 961.8 948.99 0.04 10.50 0.00
1 14 14 1172.67 1158.99 10.50 0.00
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B.2. Impact of Gurobi Heuristics on Method 3

As our DBC algorithm only separates integral solutions, it stands to reason that its performance will depend

on the effectiveness of the primal heuristics built into the Gurobi solver that produce integral solutions to

the master relaxation. In order to examine the dependency of our algorithm performance on Gurobi primal

heuristics, we have performed experiments that disable these heuristics. Table 15 and 16 report the results

for s= 2 and s= 3, respectively. When s= 2, we find that 16 out of 20 graphs are solved faster when turning

off the primal heuristics (47% decrease on average), while the running times increase for other instances

adjnoun (24%), football (122%), celegansn (55%) and PGP (16%). It can also be seen that in general, the

number of explored nodes increases, and the number of callbacks and cuts decreases when Gurobi heuristics

are turned off. When s = 3 the decrease in the running times is 39% on average for 9 out of 12 instances

and for graphs adjnoun, power and crack, the running times increase 6%, 24%, and 4%, respectively. The

number of explored nodes increases for 6 instances while the number of callbacks and cuts increase only for

the graph power.

Based on these results, it is difficult to conclude that turning Gurobi heuristics on or off leads to a

consistent, predictable impact on the overall performance. This may be attributed to the conflicting forces

at play. Turning off Gurobi heuristics can result in fewer (or no) integral solutions encountered at the root

node that invoke separation calls, with less time spent finding s-clubs and re-solving node relaxations as a

result. In some (easier) instances, this can be beneficial as the wallclock time is reduced by simply letting

the tree enumerate. However, on other instances, turning off Gurobi heuristics resulting in fewer integral

solutions leading to fewer separation calls and fewer constraints generated at the root node, costs us in overall

performance. A weaker relaxation at the root node and a larger tree size are a result of primal heuristic

solutions not triggering constraint generation as often when turned off. However, the performance that is

elicited by the choice seems to be very instance specific, and no doubt a function of the master relaxation

strength and integrality for the instance under consideration.
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Table 15 Impact of Gurobi heuristics on Method 3 when solving Group-1 instances for s= 2 and α= 0.5.

Graph G Heuristics x(v) θ #BC nodes #CB #Cuts Total time (s) s-club time (s)

karate
Off 8 3 80 17 15 0.07 0.01
On 8 3 41 17 14 0.16 0.01

dolphins
Off 3 10 211 14 12 0.23 0.17
On 3 10 200 16 15 0.52 0.25

lesmis
Off 10 8 335 18 16 0.06 0.01
On 10 8 90 18 16 0.52 0.04

polbooks
Off 20 8 476 26 22 0.33 0.26
On 16 10 268 23 19 0.41 0.13

adjnoun
Off 12 10 848 20 16 1.33 1.20
On 12 10 331 16 13 1.07 0.67

football
Off 1 15 3,686,723 137 133 204.61 47.15
On 1 15 973,384 96 92 92.14 26.56

celegansn
Off 23 21 3,290 18 14 9.57 9.18
On 23 21 2,214 13 9 6.18 5.61

celegansm
Off 32 10 335 6 1 0.31 0.05
On 32 10 181 7 3 0.48 0.09

email
Off 12 38 1,445 5 2 38.04 36.88
On 12 38 1,020 6 1 39.51 37.44

netscience
Off 3 21 88 1 0 0.31 0.03
On 3 21 206 3 1 1.20 0.04

add20
Off 52 34 4,701 8 1 8.98 0.83
On 52 34 7,088 9 2 12.59 0.95

data
Off 1 17 28 1 0 5.10 4.84
On 1 17 20 3 1 13.25 12.86

uk
Off 0 5 1 3 3 12.78 12.65
On 0 5 1 8 7 29.07 28.87

power
Off 2 15 1 1 1 1.21 0.76
On 2 15 1 3 1 2.01 1.59

add32
Off 4 29 56 1 0 0.90 0.26
On 4 29 58 4 1 3.19 1.09

hep-th
Off 18 29 826 3 1 7.78 5.92
On 18 29 412 4 2 10.95 6.34

whitaker3
Off 0 9 1 1 0 25.90 25.64
On 0 9 1 2 1 47.00 46.72

crack
Off 1 9 1 1 0 32.36 32.08
On 1 9 1 3 1 72.81 72.51

PGP
Off 45 47 4,613 4 0 48.14 17.10
On 45 47 5,858 3 1 41.63 8.20

cs4
Off 0 6 1 4 3 363.48 361.44
On 0 6 1 7 6 503.88 501.18
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Table 16 Impact of Gurobi heuristics on Method 3 when solving Group-1 instances for s= 3 and α= 0.5.

Graph G Heuristics x(v) θ #BC nodes #CB #Cuts Total time (s) s-club time (s) LCDS time (s)

karate
Off 11 2 134 1 0 0.14 0.00 0.00
On 7 4 78 2 0 0.24 0.00 0.00

dolphins
Off 20 4 7,344 21 19 1.86 0.27 0.08
On 18 5 10,654 52 39 3.79 0.45 0.16

lesmis
Off 13 7 148 1 0 0.37 0.00 0.00
On 13 7 85 4 0 0.59 0.00 0.00

polbooks
Off 27 8 47,587 21 18 16.84 0.10 0.07
On 27 8 42,088 44 34 24.74 0.83 0.20

adjnoun
Off 26 8 181,072 29 27 124.49 3.15 0.11
On 22 10 148,295 86 75 117.51 9.64 0.45

celegansm
Off 35 14 154,883 35 34 348.04 0.80 0.17
On 35 14 279,199 60 55 717.01 4.37 0.81

netscience
Off 14 20 8,841 3 3 7.34 0.07 0.01
On 12 21 7,867 8 6 30.69 0.12 0.04

uk
Off 2 7 1 6 6 44.45 42.54 0.03
On 0 8 1 9 8 51.10 50.15 0.03

power
Off 7 22 25,879 31 29 141.99 30.96 0.16
On 7 22 20,025 23 20 114.11 16.14 0.08

whitaker3
Off 0 15 1 6 6 238.44 221.16 0.03
On 0 15 1 9 8 294.46 284.14 0.02

crack
Off 0 17 1 8 7 420.60 407.57 0.05
On 0 17 1 10 9 405.37 394.57 0.03

cs4
Off 1 10 1 6 6 755.52 741.10 0.03
On 1 10 1 9 8 1005.55 994.03 0.03
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B.3. Impact of Exact and Inexact Separation on Method 3

We performed experiments to evaluate the impact of inexact separation on the overall performance of

Method 3. Given an integral feasible solution (θ̂, x̂) to the master relaxation, instead of finding a maximum

s-club in the graph interdicted according to x̂, we look for an s-club with cardinality at least θ̂ + ε using

the procedure described in Section 6.3, where ε is the minimum violation we seek in the constraint. We

experimented with ε= 1.5, 2.5, and 5.

Results of these experiments and their comparison with the default setting are shown in Tables 17–20.

The last two columns of these tables, #ICUT-H and #ICUT-ε respectively indicate the number of lazy cuts

detected using the first and second early termination attempts. Tables 17–19 report the results for ε= 5, 2.5,

and 1.5 when s= 2. As it can be seen, ε= 5 is too large of a target for early termination and the separation

problem is solved to optimality in most of the iterations of our test bed. As the value of ε decreases, more

ε-violated cuts are found early.

Tables 18 and 19 show that for both ε= 2.5 and ε= 1.5, the decrease in the running times is about 25%

on average for 18 out of 20 instances. For the other 2 instances, the running times increase 4% and 6% on

average for ε= 2.5 and ε= 1.5, respectively. Considering only those instances in Table 19 (ε= 1.5) that take

at least one minute to be solved, which are football, crack and cs4, we can observe that the running

times of football and crack decrease 68% and 10% respectively, and the running time of cs4 increases

10% when inexact separation is used. For all the other instances that take less than a minute to solve, the

running times decrease at an average of 24%.

Regarding the number of cuts in Table 19 (ε= 1.5), for the graph football, 48 out of 55 total cuts are

found by early termination. The total number of callbacks and cuts decreased from 96 and 92, respectively,

to 60 and 55, which suggests that the cuts are sufficiently strong. For the graph celegansn, although all the

violated constraints are found by heuristics, the total number of callbacks and cuts increased, which means

that the cuts added using heuristics are weaker when compared to the cuts added by the exact solution in

this instance. In other instances, the number of callbacks and total number of cuts are the same for both

exact and inexact separation or the difference is negligible.

The results of the experiments for the 3-club interdiction problem showed similar behavior, thus we only

report the results for ε= 1.5, the case where more violated constraints are found by inexact separation. In

Table 20, out of 12 instances, the running times decrease 31% on average for six instances and increase about

7% on average for three instances. Comparing the decrease in the running times for all the instances (25%

when s= 2 and 31% when s= 3 for ε= 1.5) with the decrease in the more challenging instances that take at

least a minute to solve (39% when s= 2 and 41% when s= 3 for ε= 1.5) shows that using inexact separation

is more helpful for solving the more challenging instances.
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Table 17 Inexact versus exact separation on Group-1 instances with s= 2, α= 0.5, and ε= 5.

Graph G Method x(v) θ #BC nodes #CB #Cuts Total
time (s)

s-club
time (s)

#ICUT-H #ICUT-ε

karate
inexact 8 3 41 17 14 0.15 0.02 0 0
exact 8 3 41 17 14 0.16 0.01

dolphins
inexact 3 10 200 16 15 0.38 0.18 3 1
exact 3 10 200 16 15 0.52 0.25

lesmis
inexact 10 8 90 18 16 0.31 0.01 3 0
exact 10 8 90 18 16 0.52 0.04

polbooks
inexact 16 10 268 23 19 0.46 0.11 6 0
exact 16 10 268 23 19 0.41 0.13

adjnoun
inexact 12 10 528 15 13 0.89 0.52 2 2
exact 12 10 331 16 13 1.07 0.67

football
inexact 1 15 356,392 56 51 28.40 10.89 19 0
exact 1 15 973,384 96 92 92.14 26.56

celegansn
inexact 23 21 1,528 24 20 2.80 2.37 20 0
exact 23 21 2,214 13 9 6.18 5.61

celegansm
inexact 30 11 181 7 3 0.45 0.06 1 0
exact 32 10 181 7 3 0.48 0.09

email
inexact 12 38 1,020 6 1 32.54 30.56 1 0
exact 12 38 1,020 6 1 39.51 37.44

netscience
inexact 3 21 206 3 1 1.34 0.03 1 0
exact 3 21 206 3 1 1.20 0.04

add20
inexact 52 34 7,088 9 2 12.51 0.87 0 0
exact 52 34 7,088 9 2 12.59 0.95

data
inexact 1 17 20 3 1 10.02 9.64 1 0
exact 1 17 20 3 1 13.25 12.86

uk
inexact 0 5 1 8 7 26.94 26.71 0 0
exact 0 5 1 8 7 29.07 28.87

power
inexact 2 15 1 3 1 1.86 1.40 0 0
exact 2 15 1 3 1 2.01 1.59

add32
inexact 4 29 58 4 1 3.02 0.96 0 0
exact 4 29 58 4 1 3.19 1.09

hep-th
inexact 18 29 412 4 2 10.66 5.95 1 0
exact 18 29 412 4 2 10.95 6.34

whitaker3
inexact 0 9 1 2 1 27.56 27.26 1 0
exact 0 9 1 2 1 47.00 46.72

crack
inexact 1 9 1 3 1 64.39 63.97 1 0
exact 1 9 1 3 1 72.81 72.51

PGP
inexact 45 47 5,858 3 1 40.49 7.42 1 0
exact 45 47 5,858 3 1 41.63 8.20

cs4
inexact 0 6 1 8 6 521.39 517.40 0 3
exact 0 6 1 7 6 503.88 501.18



Daemi, Borrero, and Balasundaram: Interdicting Low-Diameter Cohesive Subgroups 17

Table 18 Inexact versus exact separation on Group-1 instances with s= 2, α= 0.5, and ε= 2.5.

Graph G Method x(v) θ #BC nodes #CB #Cuts Total
time (s)

s-club
time (s)

#ICUT-H #ICUT-ε

karate
inexact 8 3 41 17 14 0.10 0.01 8 0
exact 8 3 41 17 14 0.16 0.01

dolphins
inexact 3 10 218 16 14 0.33 0.16 9 3
exact 3 10 200 16 15 0.52 0.25

lesmis
inexact 10 8 90 18 16 0.27 0.01 10 0
exact 10 8 90 18 16 0.52 0.04

polbooks
inexact 16 10 268 23 19 0.39 0.10 16 0
exact 16 10 268 23 19 0.41 0.13

adjnoun
inexact 12 10 394 15 13 0.68 0.33 10 1
exact 12 10 331 16 13 1.07 0.67

football
inexact 1 15 510,258 65 60 38.98 12.73 22 8
exact 1 15 973,384 96 92 92.14 26.56

celegansn
inexact 23 21 1,528 24 20 2.61 2.21 20 0
exact 23 21 2,214 13 9 6.18 5.61

celegansm
inexact 30 11 181 7 3 0.42 0.06 1 0
exact 32 10 181 7 3 0.48 0.09

email
inexact 12 38 1,020 6 1 31.47 29.42 1 0
exact 12 38 1,020 6 1 39.51 37.44

netscience
inexact 3 21 206 3 1 1.21 0.03 1 0
exact 3 21 206 3 1 1.20 0.04

add20
inexact 52 34 7,088 9 2 12.42 0.85 1 0
exact 52 34 7,088 9 2 12.59 0.95

data
inexact 1 17 20 3 1 9.67 9.28 1 0
exact 1 17 20 3 1 13.25 12.86

uk
inexact 0 5 1 8 7 20.94 20.71 3 0
exact 0 5 1 8 7 29.07 28.87

power
inexact 2 15 1 3 1 1.83 1.35 1 0
exact 2 15 1 3 1 2.01 1.59

add32
inexact 4 29 58 4 1 3.11 0.95 1 0
exact 4 29 58 4 1 3.19 1.09

hep-th
inexact 18 29 412 4 2 10.64 5.93 1 0
exact 18 29 412 4 2 10.95 6.34

whitaker3
inexact 0 9 1 2 1 27.21 26.90 1 0
exact 0 9 1 2 1 47.00 46.72

crack
inexact 1 9 1 3 1 65.84 65.38 1 0
exact 1 9 1 3 1 72.81 72.51

PGP
inexact 45 47 5,858 3 1 40.66 7.44 1 0
exact 45 47 5,858 3 1 41.63 8.20

cs4
inexact 0 6 1 9 7 540.55 536.14 3 0
exact 0 6 1 7 6 503.88 501.18
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Table 19 Inexact versus exact separation on Group-1 instances with s= 2, α= 0.5, and ε= 1.5.

Graph G Method x(v) θ #BC nodes #CB #Cuts Total
time (s)

s-club
time (s)

#ICUT-H #ICUT-ε

karate
inexact 8 3 41 17 14 0.09 0.01 9 0
exact 8 3 41 17 14 0.16 0.01

dolphins
inexact 3 10 215 16 14 0.39 0.19 12 0
exact 3 10 200 16 15 0.52 0.25

lesmis
inexact 10 8 90 18 16 0.28 0.01 11 0
exact 10 8 90 18 16 0.52 0.04

polbooks
inexact 16 10 268 23 19 0.32 0.03 18 0
exact 16 10 268 23 19 0.41 0.13

adjnoun
inexact 12 10 433 18 16 0.66 0.33 14 0
exact 12 10 331 16 13 1.07 0.67

football
inexact 1 15 503,717 60 55 29.72 5.86 23 25
exact 1 15 973,384 96 92 92.14 26.56

celegansn
inexact 23 21 1,528 24 20 2.60 2.19 20 0
exact 23 21 2,214 13 9 6.18 5.61

celegansm
inexact 30 11 181 7 3 0.41 0.06 1 0
exact 32 10 181 7 3 0.48 0.09

email
inexact 12 38 1,020 6 1 31.40 29.49 1 0
exact 12 38 1,020 6 1 39.51 37.44

netscience
inexact 3 21 206 3 1 1.21 0.03 1 0
exact 3 21 206 3 1 1.20 0.04

add20
inexact 52 34 7,088 9 2 12.40 0.88 1 0
exact 52 34 7,088 9 2 12.59 0.95

data
inexact 1 17 20 3 1 9.71 9.34 1 0
exact 1 17 20 3 1 13.25 12.86

uk
inexact 0 5 1 8 7 21.04 20.82 3 0
exact 0 5 1 8 7 29.07 28.87

power
inexact 2 15 1 3 1 1.80 1.35 1 0
exact 2 15 1 3 1 2.01 1.59

add32
inexact 4 29 58 4 1 3.10 0.94 1 0
exact 4 29 58 4 1 3.19 1.09

hep-th
inexact 18 29 412 4 2 10.86 6.01 1 0
exact 18 29 412 4 2 10.95 6.34

whitaker3
inexact 0 9 1 2 1 27.85 27.56 1 0
exact 0 9 1 2 1 47.00 46.72

crack
inexact 1 9 1 3 1 65.88 65.50 1 0
exact 1 9 1 3 1 72.81 72.51

PGP
inexact 45 47 5,858 3 1 40.18 7.43 1 0
exact 45 47 5,858 3 1 41.63 8.20

cs4
inexact 0 6 1 9 7 555.40 550.93 3 0
exact 0 6 1 7 6 503.88 501.18
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Table 20 Inexact versus exact separation on Group-1 instances with s= 3, α= 0.5, and ε= 1.5.

Graph G Method x(v) θ #BC nodes #CB #Cuts Total
time (s)

s-club
time (s)

LCDS
time (s)

#ICUT-H #ICUT-ε

karate
inexact 7 4 78 2 0 0.21 0.00 0.00 0 0
exact 7 4 78 2 0 0.24 0.00 0.00

dolphins
inexact 18 5 9,137 66 56 3.46 0.24 0.28 30 3
exact 18 5 10,654 52 39 3.79 0.45 0.16

lesmis
inexact 13 7 85 4 0 0.54 0.00 0.00 0 0
exact 13 7 85 4 0 0.59 0.00 0.00

polbooks
inexact 27 8 70,436 56 49 29.27 0.50 0.37 22 3
exact 27 8 42,088 44 34 24.74 0.83 0.20

adjnoun
inexact 24 9 189,962 119 107 119.30 5.07 0.66 35 33
exact 22 10 148,295 86 75 117.51 9.64 0.45

celegansm
inexact 35 14 98,595 39 37 353.80 1.62 1.06 9 18
exact 35 14 279,199 60 55 717.01 4.37 0.81

netscience
inexact 12 21 7,867 8 6 30.70 0.07 0.06 4 0
exact 12 21 7,867 8 6 30.69 0.12 0.04

uk
inexact 0 8 1 9 8 36.30 35.24 0.04 0 0
exact 0 8 1 9 8 51.10 50.15 0.03

power
inexact 7 22 17,530 24 22 105.00 16.35 0.12 8 3
exact 7 22 20,025 23 20 114.11 16.14 0.08

whitaker3
inexact 0 15 1 9 8 142.25 131.67 0.04 1 5
exact 0 15 1 9 8 294.46 284.14 0.02

crack
inexact 0 17 1 10 9 192.31 176.81 0.05 0 6
exact 0 17 1 10 9 405.37 394.57 0.03

cs4
inexact 1 10 1 9 8 581.47 568.57 0.04 0 6
exact 1 10 1 9 8 1005.55 994.03 0.03
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